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In the middle of the seventies Skordev proposed to consider in general the so-called
fixpoint complete partially ordered algebras, introduced in {3]. The code evaluation
method is an universal method for establishing a fixpoint completeness of such algebras.
Its principal result — the code evaluation theorem (or the coding theorem, as it was
called before) — implies easily all basic results of algebraic recursion theory. In the
present work we give a categorical analysis of code evaluation proofs for operative
spaces. Thus we obtain an algebraic formulation of the fundamentals of recursion
theory which can be considered as an abstract recursion theory of higher level — by
one level higher, compared with the usual theory of operative spaces [1]; and it may be
otherwise considered as a generalization of the last theory in a new categorical direction,
in which the role of multiplication in partially ordered semigroups is played by some
kind of weak tensor product in partially ordered (weak) premonoidal categories.
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1. CATEGORICAL PRELIMINARIES

Let @ be a category and let F' : € — € be an endofunctor. By Cp we denote
the category of F-algebras in €; objects of Cp are the arrows ¢ : F(X) - X mm
C, and arrows between two objects ¢ : F(X) — X and ¢ : F(Y) =Y of C are
the arrows f : X — Y in € such that f o ¢ = ¥ o F(f). The least fixed point of

* Lecture presented at the Fourth Logical Biennial, Gjuletchitza, September 12-14, 1996.
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F' is an initial object m : F(M) — M in Cp. For every object ¢ : F(X) — X
of Cp there is an unique h : M — X in C such that o m = g o F(h). The last
equality can be considered as an abstract definition of the evaluator h by primitive
recursive iteration. To treat the more general case with primitive recursion, we use
the following concept: Let A and F’ be endofunctors in €, and let ¥ : AoF - F'oA
be a natural transformation. Then we say that a parameterized evaluation holds
for the least fixed point m : F(M) — M of F with respect to A, F’ and 9 iff for
every arrow f: F'(X) — X in € there is an unique C-arrow ¢ : A(M) — X such
that { o A(m) = f o F'(£) o ¥:

A(F(M)) Aw) . A(M)
J 13
F'(A(M)) _F© | Fx) —I . x

Theorem 1.1. Suppose C has an initial object O and co-limits of all w-
sequences Xo — X; — ---, and the functors F' and A commute with those co-limits

and A(O) = O. Then the least fized point m: F(M) — M of F ezists and a

parameterized evaluation holds for it with respect to A, F' and ¥, where F' and o
are arbitrary.

Proof. 'The least fixed point m: F(M) — M is obtained from a limiting

cone ¥, : F*(O) — M of the sequence O — F(O) — F%*(0) — --- of arrows '

U = F™(do) : F*(0O) — F**1(0) in a well-known way, namely: since F preserves
these co-limits, then F(9,) : F**+(0) — F(M) is a limiting cone for the sequence
F(0O) — F*(0) — ---, whence there is an unique m : F(M) — M such that
Ynt1 = mo F(J,) for all natural n; this m is the least fixed point of F.

Now let f : F'(X) — X be an C-arrow. Since A commutes with co-limits of

w-sequences in €, we have a limiting cone

A(B,) : A(F*(0)) — A(M) 1

for the sequence

A(Yn) : A(F™(0)) — A(F™1(0)).
Define a sequence of arrows £, : A(F™(0)) — X by induction on n: &p is determined
uniquely, since A(O) is an initial object in €, and é,4; = f o F'(£,) 0 9. Then by

induction on n we have
fn —s €n+1 (o] A(gn). (2)

Indeed, for n = 0 this is trivial, since A(O) is an initial object in €, and for the
induction step:

€420 A(Bn41) = F 0 F'(Ent1) 090 A(Bnss) = f 0 F'(€npa) 0 F'(A(90)) 0 9
= foF'(€nt10A(Fn)) 0¥ = fo F'(€n) 09 = €nyar.

From the limiting cone (1) we obtain an unique arrow € : A(M) — X such that
€n = £ 0 A(Y,,) for all n. Next we show that

§oA(m)=foF'(€)oY (3)
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by proving that for all n
§n = foF'(§)odoA(m™") 0 A(J).
For n = 0 the last equality is trivial, and for n > 0 we have
foF'(€)odoA(m ™ od,) = foF'(€)odoA(F(Fa_y))
= foF'(€) o F'(A(9n-1))) 0¥ = fo F'(én- 1)019 = n.
Conversely, if £ : A(M) — X satisfies (3), then for all n

=§o A(gn)> (4)
whence it follows that the arrow &, satisfying (3), is unique. For n = 0 the equality
(4) is obvious, and for the other cases we use induction:

E0Anyy) = E0A(mo F(9,)) = fo F'(€)odo A(F(J,))  (by (3))
= foF'(§) 0 F'(A(Jn)) 09 = f 0 F'(Ea) 09 = £
The term ‘parameterized evaluation’ is motivated by the following example: C

is the category of sets, F' is a ‘polinomial’ F(X) = E A; x X7, A(X) =Y x X and
j=0

F'(X) =Y x F(X) for a fixed set Y of ‘parameters’. An F-algebra f: F(X) — X

in Cis then an universal algebra with a set (corresponding to A;) of j-ary operations

for all j < m. For the least fixed point m: F(M) — M of F, M is the set of terms

freely generated by those operations. The equality (3) then may be interpreted as

E(y: a(to, o "tj-l)) = f(ysa(f(y: tO)t e ’£(yv tj-l)))’

where y € Y is a parameter, a is a j-ary operation from basic ones, and to, ...,
are terms from M; it is a definition of £ by some kind of parameterized recursion.

A partially ordered category is a category € with partial order in every hom-set
such that a composition of arrows is increasing on both arguments. We denote the
partial order with the usual symbol <, i.e. f < g for two arrows in a partially
ordered category C means that f and g have the same domain and co-domain
and f precedes g in the sense of the partial order in the corresponding hom-set.
The universal example of partially ordered category is the category of posets and
increasing mappings, shortly referred to as ‘category of posets’. The partial order
in the last category is defined in an obvious way: f < g means that f(z) < ¢(z)
for all z in the domain of f and g.

The notion of increasing functor F : ¢ — D between two partially ordered
categories C and D is also obvious: F is increasing iff f < g implies F(f) < F(yg)
for every pair of arrows f, g in C.

Let @ be a partially ordered category and let F : € — C be an increasing
endofunctor in C. Then we shall call an F-algebram : F(M) — M in C a proper
least fixed point of F iff for every F- algebra f : F(X) — X in C there is an arrow
f:M — X in € such that fom=fo F( f) and the following two conditions hold
MOoreover:

a) for every C-arrow ¢ : M — X, such that f o F(p) < ¢ om, we have f<o;

b) for every C-arrow ¢ : M — X, such that g om < f o F(p), we have ¢ < f.
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Obviously, a proper least fixed point of F' is also such one in the usual sense, and f
is the corresponding evaluator for any F-algebra f. We shall desist from discussing
general criteria of existence of proper least fixed points, restricting ourselves with
the remark that this is a natural concept. Typically, the usual least fixed points of
increasing endofunctors are proper. For instance: consider the ‘polinomial’ F(X) =

m .
>~ Ajx X7 in the category € of partially ordered sets and increasing mappings. The
=0

category C is partially ordered in an obvious way: f < g means that f(z) < g(z) for
every z in the domain of f and g. The least fixed point m : F(M) — M exists and
the object M is the set of all terms generated by j-ary operations corresponding
to the elements of A; (for all j < m) with the trivial partial order coinciding with
the equality. This least fixed point is proper one and conditions a) and b) express
in abstract way the possibility of proving inequalities by induction on complexity
of terms (for instance in a) we prove f(t) < (1) by induction on the complexity of
the term t € M).

2. NORMAL EVALUATION IN STRUCTURED RING-CATEGORIES

A structured ring-category (shortly, SRC) is by definition a 5-tuple
(C,0,a,R,Vr), where: C is a category with finite co-products and co-limits of
w-sequences Xo — X; — ---; @ is a bi-endofunctor € — € in € such that for any
fixed object Y of € the functor Y ® _ preserves those co-products and co-limits;
a: X0(Y©Z) - (XOY)0® Z is a natural transformation (not necessarily iso-
morphism) satisfying Mac Lane pentagonal aca = (a® 1)oao (1 ® a); Ris an
endofunctor in € and Jp : X @ R(Y) — R(X ®Y) is a natural in X,Y € C trans-
formation satisfying R-coherence: R(a)odro(1®Jp) =Jgroa, i.e. the following
commutative diagram:

X0 (Y ® R(2)) (10 9r) . X O R(Y © Z) YR R(X ®(Y 0 2))
i R(a)
(X 0Y) 0 R(2) VR . R(X0Y)62)

We fix a SRC (€, 0, @, R, 9r) and we shall write shortly C for the last 5-tuple.
To ensure existence of some least fixed points and applicability of Theorem 1.1
in some cases below, we shall suppose that the endofunctors R, Fi(X) = X ®© X
and F5(X) = X © B in € commute with co-limits of w-sequences Xo — X; — - -
for any fixed object B of C. Binary co-products in € will be denoted by +, and
we write Iy and I; for the canonical monics X; — Xo + X, of the co-product
Xo+ X1 (i = 0,1). Thus Iy and I; are natural in X, X, transformations, and
we shall use short notations for their compositions, for instance: Ipy = Iy o I,
Loy = Iy o Ipo I}, etc. We also write [fo, f1] for the unique arrow Xo+ X; = Y
such that [fo, filol; = fi : Xi = Y (i = 0,1). Since the functor Y @ _ preserves
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binary co-products, there is an isomorphism
b 1Y © (Xo + X1) = (¥ © Xo) + (¥ 0 Xu),

natural in Y, Xo, X1, such that 65" = [10 1o, 1@ ;). This means that §50(10L) =
I; for both 7 = 0,1, and for every pair of arrows ¢, % : Y © (Xo + X;) — Ain C,
such that po (10 L;) =¥ o (10 ;) for both i =0, 1, we have ¢ = 9. A proof of an
equality ¢ = ¥ of this kind based on the last principle will be called below a ‘proof
of ¢ = ¥ by considering cases’.

Algebraic structures concerning the present paper are represented in this con-
text by standard C-algebras, i.e. arrows a : (X ® X) + R(X) — X in C, satisfying
the following two equalities:

apo(l®ag) =apo(ap®1)oa, (5)
apo(l®ay) =a;oR(ag)oVp, (6)

where a; = ao I;, 1 = 0,1. The equality (5) means that ap : X o X — X is a
‘premonoid’ in € (note that € is not supposed to be premonoidal category with
respect to ), since the associativity transformation @ may not be an isomorphism).
Equality (6) corresponds to the equality (¢, ¥)x = (¢x, ¥x) in operative spaces in
notations of Ivanov [1]. Thus operative spaces are standard C-algebras in the SRC
of sets, 1.e. the SRC (C,®, @, R, ¥g), where C is the category of sets, ® is the usual
Cartesian product, R(X) = X x X, a is the usual associativity isomorphism, and
dp: X x (Y xY)—= (X xY)x (X xY) is the natural transformation defined by

Ir((z, (v, V) = ((z,¥),(z,¥)) (z€X, y,y €Y).

The forgetful functor P : SA(C) — C from the category SA(C) of standard C-
algebras to € has a left adjoint L : € — SA(C), which in the case of the SRC
of sets assigns to each set X the free standard C-algebra L(X) generated by X.
In the present section we shall give an explicit construction of this adjunction in
terms of the least fixed points, and this construction is essential for the categorical
axiomatization of code evaluation which we give in the next two sections 3 and 4.
The reader will probably notice the analogy between sections 2 and 3.
Now consider two bi-endofunctors S and S in the fixed SRC €, defined by

S(B,X)=B+((X ©X)+ R(X))
and .
S(B,X)=B+((X © B) + R(X))
for objects B, X of € and arrows as well. We shall fix the object B of € and write

shortly S(X) and $(X) for S(B,X) and S(B,X), respectively (for arrows S(f)
means S(B, f) = S(1s, f) and, similarly, for S). We have a functor N : €5 — C;

from the category of S-algebras in C to that one of S-algebras, defined by
N(f) = [fo,[fr0 0 (1O fo), ful]

for objects f : S(X) — X of Cg, i.e. S-algebras in C, and N(p) = ¢ for arrows
¢ in Cg, where fo = fo Iy, fio = fo I, and fiy = fo I}y, as we shall write
shortly below for any suitable arrow f in €. N is indeed a functor, since for an
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arrow ¢ : f — g between two algebras f : S(X) - X and g: (Y) — Y in Cg, i.e.
an arrow ¢ : X — Y in € such that p o f = g0 S(p), we have
po N(f) =[pofo,[po fioo (10 fo),po fu]
= (905(¢) 0 Io,[g 0 S(p) © 100 (1® fo), g0 S(p) 0 Iny]
= [90,[9102 (¢ © ) 0 (1O fo), 911 © R()]]
= [QOa [910 o (‘P ©go S((P) 0 10))911 ° R((,O)]]
= [g0, (910 © (¢ © g0), 911 © R()]]
= {90,910 0 (1 © go), gu1]] o (18 + (¢ © 1B) + R(¢)))
= [90, [910 0 (1 ® g0), 911]] 0 S(p) = N(g) 0 S(p),
Le. ¢ : N(f) — N(g) in C;. - ' -

Let 7: S(T) = T and 7 : S(T) — T be the least fixed points of S and S, re-
spectively, in C. (Actually, T and T are endofunctors in C and r(B) : S(B, T(B)) —
T(B) and #(B) : $(B,T(B)) — T(B) are natural in B isomorphisms.) In the SRC
of sets T" is the set of terms generated from elements of B by means of two binary
operations — 79 = 70 I1p and 71 = 7o I ;, and T is the set of normal terms.

Denote by D the full subcategory of Cs, consisting of those S-algebras f :
S(X) — X for which f; = fol; : (X ® X)+ R(X) — X is a standard C-algebra.

We are looking for an algebra f : S(X) — X in D such that N(f) = 7.
To find such an algebra, consider the natural in X,Y € € transformation

9:Y 0 8(X)— S(Y)+S(Y ®X),

defined by _
J=(lio+110(a+9Jr)oby)ody.
This definition is equivalent to the following three equalities:

-190(1610) = Ioto, (M)
9o (10 o) = oo, (7')
190(16)]11):[1110193. (7")
Proposition 2.1. Every algebra f : S(X) — X from D satisfies the equalily
fioo (1O N(f)) = N(f) o [1,5(fw0)] o ¥, (8)

X 0 8(X) 1ON() » X0 X

9 fio

S(X)+ S(X © X) L 3ol S(X) ND

Proof. By considering cases. Denoting by ¢ and v the left- and right-hand sides
of (8), respectively, we shall conclude ¢ = 9 by showing that wo(101y) = ¥o(101,),
po(10I10) =¢o(10I1p) and o (1®I1;) = Yo (1® I1;). Consider, for instance,
the second of the last three equalities, leaving the other ones to the reader:
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po(1® )= fioo (1O N(f)olin) = fioo (1O fioo (10 fi)),
and

Yo (10 hio) = N(f) o[1,8(fr0)] o hhiooa = N(f) 0 S(fio) o Iyo o @
= N(f)oLipo(fio®1l)oa= fipo(1® fo)o(fio®1)oa
= f100(fi0 ® fo)oa = f100 (10 fr00 (10 fo)),
the last equality being the equality (5) for the algebra f € D. In the case with
(1 ® I ;) the equality (6) is used in a similar way.

Now suppose an algebra f : S(X) — X from D satisfies N(f) = 7. Then,
obviously, X = T', and composing the equality N(f) = 7 from right by I and I,
we obtain fy = 79 = 7ol and f1_1 = ‘{"11 = .7" o I;1, whence f should be of the form
(70, (i, T11]] for some arrow p : TOT — T in €. Then the equality N(f) = 7 is
equivalent to po (1® 7g) = 119 = 70 L1p. If f € D, then by (8) we obtain

po(107)=7o[l,5(u)]od, 9)
Fosd) —2 et T
9 7
$(T)+$(ToT) 1, ) » $(T)

The last equality determines u uniquely by the principle of the parameterized
evaluation, i.e. by Theorem 1.1 (with the functors S for F, T® X for A(X)
and S(T) + F(X) for F'(X)). This suggests to define p by (9). Then the ar-
row f = [7o, [, T11)] satisfies N(f) = 7, because a composition of (9) from right by
1 ® Iy yields

po(1® ) =r"o [I,S(p)]0190(1 ® Ip) = 701, S(u)] 0 Io10 = Fro0-
The arrow f will be denoted below by 7V, i.e

TN — [7"0) [}‘)‘i-ll]])
where y satisfies (9). Thus we see that 7V : S(T) — T is the unique S-algebra f
satisfying (8), such that N(f) = 7.

Proposition 2.2. For every S-algebra f : S(X) — X in C satisfying (8) there
is an unique arrow h : 7V — f in Cs, 1.e. an unique h : T — X in C, such that

hot™ = foS(h), (10)
and the arrow h is the unique one h : 7 — N(f) in Cg, t.e.
hot = N(f)oS(h). (11)

Proof. If h : N — f is an arrow in Cg, then h = N(h) : 7 — N(f) is such
one in Cg, but the arrow h : 7 — N(f) in C; is unique, since 7 is the least fixed

point of §. Therefore the arrow h : T — X, satisfying (10), can be only the unique
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arrow h : 7 — N(f) in C¢. To show that the last arrow satisfies (10), we consider
the cases:

horNoly=hoty=N(f)oS(h)oly=N(flolp=fo=fol,= foS(h)o Iy
horNoly = horyy = N(f)oS(h)ol; = N(f)oli1oR(h) = fiyoR(h) = foS(h)olyy;
but hor¥ oIy =hop and fo S(h) o Iio = fio o (h ® h). Therefore it remains to
show that
hou= figo(h®h). (12)
We shall do this by the principle of the parameterized evaluation. For that define
wo=hop, g1 = fioo(h®h), and
n=N(f)o[S(h),1]: $(T) + $(X) — X.

By the principle of the parameterized evaluation (Theorem 1.1) there is an unique
C-arrow ¢ : T O T — X such that

9o (107)=no(l+S(p)od (13)

We shall show that both oo and ¢, satisfy (13) with respect to ¢, whence it will
follow (12) and the proof will be completed. For g this can be done without using

(8):
woo(lOT)=hopuo(107)= ho*i'o.[l,.S"(p)]oti.’z N(f)oS"(h)o[l,S.'(;.t)]oJ
= N(f) o [S(h), S(¢0)] 0§ = N(f) o [$(h), 1] o (1 + S(0)) 0§
=no (14 S(po)) 0 V.
For p; the equality (8) is used:
p10(lO7)= fipo(h@hot)= fipo (h® N(f) o S(h))
= floo (10 N(f)) o (h© S(h)) = N(f) o [1,S(f10)] 0 ¥ o (h © S(h))
= N(f)o[1,5(fi0)] o (S(h) + $(h ® h)) 0 §
= N(f) o [S(h),S(p1)] 09 = no(1+ S(p1)) 0.

Since 7: §(T) — T and 7 : S’(T) — T are least fixed points, there are unique
arrows v : T — T and ¢ : T — T such that

vor=1"0oS®) (14)

and ‘
toT = N(7)oS5(s), (15)

respectively.
Proposition 2.3. v is a retraction with inverse ¢, i.e.
vor=1= L7.

Proof. 1t is enough to show that yoco7 = 70$(o4), since the arrow 1 : + — #
in C; is unique. But

voror=voN(r)oS(t)=volrn,[rneo(lOm),nileS()
= [V o, [l'/OTlo o (1 © 7'0);1‘/07'11]] OS(")
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=[N oSW) ol [N 0 S(¥)olipo (10 ), ™ 0S(w)o I11]]o S(:)
= [fo, (w0 (5@ ) 0 (10 1), 711 0 R(H)]] 0 S(2)

= [#0, [0 (¥ © 7o), 11 © R(¥)]] 0 S(2)

= [0, [T10 0 (? ©® 1), 711 0 R(¥)]] 0 S(¢)

= [#0, [F10, ful] o (14 (0 @ 1) + R(¥))) 0 S(:)

=+08()oS(t) = 1"0.5"(1'/OL).

Denote by v the morphism to# : T'— 7. This is the ‘normalizing’ morphism,
in the SRC of sets v assigns to each term its normal form. For any S-algebra
f: S(X) — (X) in C denote by f the evaluator of f with respect to 7, i.e. the
unique arrow f : T — X such that fo7r = foS(f). (In the case of SRC of sets f
assigns to each term in T its value in the algebra X.)

Corollary 2.1. For any S-algebra f : S(X) — X in C the following conditions
are equivalent:

(2) fov="Fi

(b) there ts @ morphism h ™V = f in Cg;

(b') there is an unique morphism h : T — f in Cs;

(c) there is @ morphism h T — X in € such that hov = f;

(c') there is an unique morphism h : T — X in € such that hov = f;

and when they hold, the unique arrows h in (b’) and (c') are the same as the
evaluator of N(f) with respect to T or the unique morphism h : 7 — N(f) in Cg.

Proof. (a) = (b) Let for = fand h = fou. Then
horV = forom™ 0 S(vou) (by Proposition 2.3)
= forovoToS(t) (by (14))
= fovoroS(t)=foroS() = foS(f)oS(t)=foS(h).
(b) = ()& (b') Let h: T — X and ho 7V = foS(h). Then
hovor=horNoSW)=foS(h)oSw)= foS(hov),
and by the uniqueness of the evaluator f we have f = hov. Thence, also for=
hop ot = h and therefore the morphism h : ™ — f in Cg is unique.
(c) = (a) Let h: T — X and hov = f. Then
fov=hovov=hovotov=hov= f.
(c) = (c’) Because hov=f implies h=hovor= fou
The implications (b') = (b) and (¢’) = (c) are trivial. The equivalence of
(a)-(c¢’) is proved. If they hold, then for the morphism h : N — fin (b') we have
h=N(h): 7= N(rV) — N(f) in C4. From the proof of (b) = (c) it is clear also
that the morphism satisfying (b’) coincides with the unique morphism in (c').
The morphism k from this corollary, when (a)-(c’) hold, will be called below a
normal evaluator of f. The next proposition is partially a reverse one to Proposi-
tion 2.1.
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Proposition 2.4. If the S-algebra f : S(X) — X satisfies (8) and the arrow
lx ©(1x © f) is an epic, then f € D.

Proof. We have to prove that
f100(10 fio) = fioo(fio®1)oa (16)
and

fr100 (1O fu1) = f11 0 R(f10) 0 9r. (17)

The equality (17) follows easily from (8) by a composition from right with 1® I;.
Similany, a composition with 1 ® Iy yields the equality

f100(10 fio 0 (10 fo)) = fio o (fi0 @ fo) o @, (18)
which is weaker than (16). To prove the last one, we shall show that
fi100 (10 froo (10 for)) = fioo (fio® for)oa. (19)

From (19) the equality (16) will follow immediately by canceling from right the
arrow 1 ® (1® f o). This can be done because 1 ® (1 ® f) is right-cancelable by
suppositions of Proposition 2.4, and f = fov = foiov, whence 10 (16 fo t) is
also right cancelable. Therefore it remains to prove (19). For that we shall use the
principle of the parameterized evaluation. Consider the C-arrow

Y =[fiooc(1ON(F)),N(f)] : (X ® S(X)) + $(X) = X
and the natural in X,Y € € transformation
9 : X O(X0S(Y)) = (X08(X)+S(Xo(X0Y))
defined by
9 = ((1®Ilo)+Ilo(&o(l@&)-}-ﬂgo(l@ﬂg)))o(l+6®)0600(1®(1+6o)o6o),

which is equivalent to the following three equalities:

1910(1(9(1@10))=Ioo(1®Ilo); (20)
1910(1@(1@[10)):11100(_10(1@&); (20’)
Jio(10(10 1)) = hnnodro(l1®Ig). (20”)

By Theorem 1.1, applied to functors F(Y) = S(Y), A(Y) = X & (X ®Y) and
F'(Y) = (X ® (X)) + F(Y), there is an unique C-arrow p: XOXo0T)—- X
such that '

po(lo(107))=1¢o(l+5(p)) o (21)
Therefore, to complete the proof, it is enough to show that both sides of (19) satisfy
(21) with respect to ¢. Denote the left- and right-hand sides of (19) by ¢, and ¢;,
respectively. To prove

00o(10(107))=vo(l+S(po))odh, (22)

we use the following form of the principle of considering cases: composed from
right by 10 (10 1), 1© (10 I10) and 1® (1 ® I11), the two sides of (22) become
equal, hence we shall conclude (22). We shall show this for 1 © (10 I 10), leaving
the other two cases for the reader (they are similar or simpler). First, notice that
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by Proposition 2.2 and Corollary 2.1 we have f = hov, where h is the normal
evaluator of f, and therefore f o« = h (by Proposition 2.3), whence

forot=N(f)oS(fou), (23)
and
000(10(107)) = fioo (10 froo(10 forot)) = f100(1® fioo (1O N(f)oS(for))).
Then
<Po°(1@(1®""))°(1®(1®[10))=f100(1®f1o°(1®N(f)05'(foz)ollo))
= f100(10 fioo (10 fioo (f 01 ® fo))).
On the other hand,
Yo(1+ $(p0)) 091 0 (10 (16 o)) = ¥ o (1+ §(po)) 0 L0 0 a0 (10 @)
=yol;0S(ps)olpoao(l1®@a)=N(f)ohoo(po®@l)odo(l®a)
= fi00(po® fo)oao (1O a)
= fr00 (fioo (1@ fro0(1® fo01))® fo)oao (1O a)
= f100 (f1o® fo) o (10 froo (10 for)) @ 1)cdo(l®a)
= froo (fio® fo)0o@o (10 (fino (10 for)©1))o(10a)
= f100(10 fioo (10 fo)) o (10 (froo(1® for)©1))o(10a)
= f100(10 fioo (10 fo)) 0 (10 (f1o ®1)) o (10((1© for)®1) 0 )
= f100 (10 fro0 (10 fo)) o (10 (fro®1)) 0 (10 a0 (10 (fo: O 1))
=f10°(1Ofloo(flo®fo))°(l®&)o(l®(lO(f0LQ1)))
= f100(10 fr00 (10 fi00 (10 f0))) 0o (10 (10 (for® 1))
= f100(10 fioo (10 fioo (foi® fo))) =00 (10 (10 7))o (1O (16 lo)).
To prove _
p10(10(1O7))=¢o(l+5(p1)) oy, (24)
consider the cases as in the proof of (22). Again, we shall consider the case with
1® (1 ® I10) only, leaving the other ones to the reader (note that in the case with
1 ® (1 ® I1;) the R-coherence is used in the same way in which the Mac Lane
pentagonal diagram for @ is used in the case with 1 ® (1 ® I10)). We have, using
(23) as before,
010(10(10%))0 (10 (10 o)) = fioo (fio® for)odo (10 (10 110))
=f1o°(f1o®f°t01"0110)°a=f10°(f10®f100(f°¢®fo))°&-
On the other hand,

Yo (148(p1))ovd10(10 (10 o)) =¥ o(l+S(p1)) o ioodo(10d)
=N(f)o.§'(<p1)oIlooao(1®&)=N(f)oIloo(cplel)oao(l@&)
= fl0o(10 fo)o(pr®1)oac(lOa)
:fmo(l@fo)o(floo(fIOQfOL)o&O1)0&0(1@&)
= f100 (10 fo) o (fioo (fio ® for)@1)odoa
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= fi00(fio® fo)oao(fro®(for®1))oa
=f10°(1®f100(1(?fo))°(flo®(fm®1))o&
= froo (fio® froo (for® fo))od=p10(10(107)) 0 (10 (16 I)).

Corollary 2.2. The algebra ™™ : S(T) — T belongs to D, and therefore il 1s
an initial object of D.

Proof. Since the evaluator v : T — T of 7V is right-invertible by Proposition
2.3, the arrow 1©(1©v) is an epic. Then by Proposition 2.4 the algebra 7V belongs
to D and by Proposition 2.2 it is an initial object of D.

3. MINIMAL EVALUATION IN PARTIALLY ORDERED SRC

A partially ordered SRC is a SRC (C,®, a, R,Jg) such that € is in the same
time a partially ordered category and all involved functors (i.e. ®, R and +) are
increasing with respect to the partial order in C on every argument. In the present
section we shall fix a partially ordered SRC (C, ®, a, R, 9g) satisfying all conditions
from the previous section, and we shall suppose moreover that the least fixed point

r(B) : S(T(B)) — T(B)

is a proper one with respect to the partial order in €. The bi-endofunctors S and
S, defined as in the previous section, are increasing. Consider the bi-endofunctor
S*(B, X) = S(B, X) + X which also is increasing. As in the previous section, we
shall write shortly S(X), S(X) and S*(X) for S(B, X), $(B, X) and S*(B, X),
respectively. We have the functor N : €3 — Cg+ defined by N(f) (f,1] for

objects f : S(X) — X of €5 and N(ip) = ¢ for morphisms ¢. The composition

N o N : €5 — Cg+ preserves morphisms and we shall write shortly f* for the value
N(N(f)) of N o N for objects, i.e.

f+ = [[for[flo o(l O] fo):fll]v 1]

Now, for the fixed object B of C we shall suppose that B = By + B;, where By and
B, are two fixed objects of C. As usual, we denote the canonical monics By — B
and B; — B by Iy and I, respectively. Intuitively, the object By will be considered
as the object of ‘parameters’, and B; — as the object of ‘variables’, which is just
the case for the SRC of sets. We use the short notations So(X), So(X) and Sz (X)
for S(Bo, X), S(Bo, X) and S*(By, X), respectively. (Thus we define endofunctors
So, So and S;' in C, for instance, So(f) = S(Bo, f) = S(1B,, f) for an arrow f
in C, etc.) We have a functor P : Cg — Cg, defined by P(f) = f o S(Io,1) for
objects f, and P(p) = ¢ for arrows ¢ of Cg, where Iy is here the canonical monic
Iy : By — B of the co-product By + B;. Intuitively, the functor P simply ignores
interpretation of variables. We have also another functor @ : B — Cg which is in
some sense inverse to P. Here B is the category, defined as follows: objects of B
are pairs (z, f), where z : By — X and f : So(X) — X are C-arrows with the
same co-domain X, and morphisms ¢ : (z, f) — (y,¢) in B, where y : B; — Y and
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g: So(Y) — Y, are the C-arrows ¢ : X — Y which are simultaneously morphisms
in the comma category (B, | €) and in Cs,, i.e. y=poz and po f = g0 So(p).
For objects (z, f) € B the functor Q is defined by

Q(z:f) = [[nyz]:fl] : S(X) = X:

and for arrows ¢ in B the functor Q is defined trivially: Q(p) = . The reader
can easily check that @ is indeed a functor and Q(fo1, P(f)) = f for any object f :
S(X) — X of Cs, where, as usual, fo; = fool; : By — X and also PQ(z,f)=f
for all (z, f) € B.

Next we define a natural in X, Y € € transformation

It =9 : X O0SH(Y) - SHX)+ SH(X oY),

similar to the transformation ¥ in the previous section, namely,

9t = [(lo+ o) 09, I11) 0 b,
which is equivalent to the pair of equalities

9t o (10 1) = (Io+ Ip) oV
and

*o(10 L) =1;.

The transformation 19;’0, defined in the same way for the functor Sy instead of S,
will be denoted shortly by 97 .

Proposition 3.1. For any algebra f : S(X) — X in Cg the equalities (8) and
froo (1@ f*)=fto[1, S*(f10)] o0t (25)
are equivalent, and therefore (25) holds for every object f of D.
Proof. An easy consequence of definitions.

Now consider a morphism ¢ : By — T = T(B). In the case of SRC of posets
and the trivial order (coinciding with the equality) in By, o assigns to each variable
v € B; a normal term o(v) € T which may contain any variable from B;. Thus
o determines a system of inequalities {o(v) < v | v € B;}. A solution of the last
system in an So-algebra f : So(X) — X in this SRC is a function z : By — X such
that the evaluator h : ' — X of the algebra N(Q(z, f)) : S(X) — X with respect
to the least fixed point 7 satisfies the inequality

hoo < ho Ty, (26)

where 79, = 7o lgo I, : By — T is the mapping, which assigns to each variable
in B; the same one considered as a normal term from 7. When Q(z, f) € D,
i.e. f1 is a standard algebra in the SRC of posets, the mapping h: T'— X is a
morphism h : 7V — Q(z, f) in Cs (by Propositions 2.1 and 2.2), and therefore
P(h)=h: P(rN) — f is such one in Cg,, i.e.

hotVN o S(Ip,1) = f o So(h). (27)
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And the solution z can be restored from k, namely, z = h o 7o, which follows from
the equality h o 7 = N(Q(z, f)) o S(h) by a composition from right with Ioy.

In the general case, when we have an arbitrary partially ordered SRC @ and
an Sp-algebra f : So(X) — X in it, such that f; € SA(C), the above consjderation
suggests to treat an arbitrary arrow o : By — T as a system of inequalities and
morphisms h : P(tV) — f of So-algebras in €, satisfying (26) as solutions of the
system o. The next proposition will give us a more convenient form of (26).

First we define an arrow a : T — Sg (T), called analyzer of the system o, by
the following equality:

a = [(IO+0'), [(IIO+#°(1®U))°6@, 1011]]O‘i"1

An equivalent and perhaps more clear form of this equality is the following definition
‘by cases’:

a o 190 = Ioo; (28.1)
ooty = 1,00, (28.2)
a o0 (10O Ip) = loto; (28.3)
aotipo(lOnh)=hLopo(lO0); (28.4)
ao Ty = Io1y. (28.5)

Proposition 3.2. For any Sp-algebra f : So(X) — X in C and any morphism
h: P(TN) — f of such algebras, i.e. any C-arrow h : T — X for which (27) holds,
we have the equivalence

hoo<hoty < froSt(h)oa<h.
Proof. The reverse direction (<) of the last equivalence is easy to be proved
and does not use (27):
ftoS§(h)oao o =ftoSt(h)ohoo=ftoljohoo=hoo. (29)

To prove that ho o < ho 7o implies f+ o S§(h)oa < h, suppose hoo < ho 7.
Since 7 is an isomorphism, it is enough to prove the inequality

ftoSt(h)oaoT < hort. (30)
We shall do this by considering cases as in the definition of a. We have, using
(28.1) and (27),
froSt(h)oaoroly=ftoSF(h)olp = f+olyoSs(h)olo

=N(f)olp=fo= foSo(h)olp = hotV oS(Ip,1)0Io

=horN oIy =homol. (31)
On the other hand, by (29) and the supposition h o o < h o 7o; we have

ftoSf(h)oaotyoly <horol,

whence (using the supposition that the functor + is increasing on both arguments)

we conclude that
ftoSi(h)oaoty < horyp.
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In this way it would be enough to show that
ftoSf(h)oaotn; <hom;
for both i = 0, 1. The case with i = 1 is easier:
foSf(hyoao i = [* oSt (h) ol = N(f) o So(h)o Iy = N(f) o L1 o R()
= fiioR(h) = foSo(h)olyy=hotV 0S(Iy,1)0I1; = ho ;.
For the case ¢ = (0 we again consider cases, as follows:
ffoS5(h)oaotino (10 1) = f*oSF(h)oloio = N(f) o So(h)o I
=N(f)olipo(h®1)= fioo(1® fo)o (h® 1),
and using the chain of equalities (31) and the equality (27), we have
f+oS'3'(h) oaotigo(l®Iy)= fioo(h®hoty)=f 0So(h) o Iigo (1 G 7o)
= foSy(h)o oo (1® 7o) = hor" oS, 1)o I1g0 (1 ® 7o0)
=hopo(107)o(1©I))=horpo(10 I);
on the other hand (using twice (27) and the supposition ho o < h o 7y;),
ffoSf(h)oaorpo(10 )= ftoSf(h)olopo(l®o)
=ftolhohopo(l®o)=hopo(10o)=hot¥0S(Is,1)ol1p0(1®0)
= foSp(h)olipoo(1® o) = ficro(h®hoo)
< fioo(h@hoty)= foSe(h)olpo(lO )
=horVN 0S(lp,1)elipo(1®T01)=hopo(l® o)
=hopo(l®m)o(lOL1)=hompo(l1®).
From the last two chains of equalities and inequalities we conclude
ftoSf(h)oaoty < hoty,
using again the fact that the composition o and the co-product functor + are
increasing with respect to <.

Proposition 3.3. We have the equality

aop=[1,55(n)]od5o(l0a) (32)
ToT —E 7T S
10a (1,55 (w)]
+
T SH(T) 2 » SHTY+SF(ToT)

Remark. Note the analogy between (32) and the equality (9) written in the
form 7= lop = [1,5(u)]odo (1O 771).

Proof. Since 7 is an isomorphism, it is enough to show
aopo(lO7)=[1,SF(p))odto(lOaot),
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which according to (9) is equivalent to
aoto[l,S(u)]od =[1,5F(W)]lodfo(l®aot).

To prove the last equality, denote its left- and right-hand sides with ¢ and ¥,
resgectively, and consider cases as in the definition of a. Indeed, using definitions
of ¥, 196" and «, we have

po(1® ) =aoiofl,5(u)]edo(1® In)=aoctofl,S(u)]olpgo (10 L)
= a oo (10 Iy) = oo,
and
Yo (10 Ioo) = [1,SF (1)) 093 o (1 ®aooo) = (1,55 (4)] 093 o (1 Ioo)
= (1,53 ()] o (Io + Io) o Jo 0 (1 ® Io) = [Iy, SF (1) © o] © Ioro
= [Jo, Io © So()] © Tor0 = Ioro = ¥ 0 (1® Ino),

where ¥, is the natural transformation d for the functor So instead of S. In a
similar way,

po(10In) =(1,SF (W09 o (1O a0 ) ={1,55 (k)] 095 0 (1@ L 00)
=(1,Sf(W)ohio(100)=S§(weLho(l0o)=Lopo(l10O0)
=aofo(lON)=aoto[l,S()e oo (10 L)
=aoto[l,S(u)edo (10 o) =po(10 In),

whence by considering cases we conclude
po(10) =¢o(10 D).
Next we have
Yo(10 Iigo (10 Io)) = [1,55 (1)) 095 0 (1@ @0 100 (10 L))
= [1:$c)>'(#).]°15’3L o (10 o) = [1,53(#)]°ﬂ10+10)°300(1 ® I1o)
= [Io,I9oSO(p)]oﬂoo(l®Ilo) = (Io, Io 0 So(p)] 0 Inno 0 @
=IpoSo(p)oiooa=Ipioo(pO1)oa,
and
cpo(l@],oo.(IQIo)) =ao'i'o[l,S"(p)]otéo(IQIloo(lelo))

-_-.aoi-o[l,S(p)]quoo&o(l@(l@lo))=aoi’oS(y)oIloo&o(IQ(l(DIo))

=00"rmo(,u®l)oiio(l®(l®lo))=ao‘i'100(;1®1)0(l®lo)o&

=ao1"mo(1®Io)o(u®1)o&=Iomo(p(D1)05=¢0(101100(1010)).

Furthermore,

Yo(10 oo (1O I1)) = [l,Sg'(p)]oﬂg'o(l@aoi’loo(l(all))

(1, SHW o9t o (10 hopo(100) = [L,STWlo o (1O ko (10 )
=Sb’”(p)ollo(l®po(l®d))=I;opo(l@po(IGO’)),
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and using also Corollary 2.2,
po(10hiwo(10h))=aoto[l,S(u)]odo (16 higo(10 I}))
.:aofo[l,.S"(u)]quooéo(l@(l@Il))=aoi‘oS'(p)oImo&o(l®(1®Il))
=aofpo(u®l)oac(10(10h))=aorgo(u®@1)o(1®)oa
=aofgo(lo)o(p@l)oa=Lopuo(l®o)o(ud®1)oa
:Ilopo(p®1)o&o(1®(1®a))=Iloyo(lé)po(lcaa))
=9%o(10Lipo (10 N)),
whence we obtain
wo (10 I)=¢o(l10 ).
Finally,
Yo (1o In)=[1,S5(k)]od5 o(l@aoty)=[1,5F (1)) 093 o(1® Ioy)
=[1, 5§ (W] e (lo+ Io) o doo (1® Iy)
= [Io, Ip  So()] © I111 0 9 = Iy 0 So() 0 Iy 0 Vg
= Ip11 0 R(p) o Ip
and
<po(l®I11)=aov"o[1,$'(p)]olnloz93=-.ao'i'oS'(;1)oI“oz93
=aofoR(u)odg = IonoR()odr=1vo (1O I).
Definition. Given an Sp- algebra f : So(X) — X in € and an C-arrow « :

T — S§(T), another C-arrow h : T — X will be called an a-minimal evaluator of
f iff h is the least solution of the inequality

fToSf(noa<ny (33)

with respect to 7 in @(T", X) and for all y € C(T,X) and ¢ € C(T ®T, X) satisfies
an additional condition, written symbolically as follows:

V1 € C(T, X)(po(100) < ¥ = po(10f* 0S5 (n)oa) < ¥) = po(10k) < ¥, (%)
where ¢ = fipo (x ©®1): TO X — X.

Lemma 3.1. Let 0 : By — T be a system with analyzer o : T — Sy (T) let
f:S(X) = X be an Sp-algebra in € such that fi € SA(C), and let h : T — X
be an a-minimal evaluator of f. Then for every C-arrow x : T — X the arrow
floo(x®@h): TOT — X is the least solution of the inequality

X'o(1+S55(¢))edfo(loa)<( (34)
with respect to ¢ in (T OT, X), where y' = frolSF(x),1]: SF(T)+SF(X) - X.
Remark. Note the analogy of (34) with (13).
Proof. The arrow h being a solution of (33), we have
fioo (x©h) > froo (x © f* 0 ST (h) o)
=fro(10f*)o(x0 S (h)o(10a)
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= fto[l,SF(fr0)] o9 o (x ©®Sg(h))o(1®a) (by Proposition 3.1)
= f*o[1,5f (fio)l o (S§ (x) + S5 (x @ h)) 0 ¥F 0 (1@ )
(since ¥ is natural)
= fto[S§(x), S5 (oo (x ©h)]oIf o (10 a)
=x o(1+SF(fioo(x@h)))od o(1®a)  (by definition of x'),
ie. ¢ = fio o (x ©® h) satisfies (34). For an arbitrary solution ¢ of (34) in
C(T © T, X) we shall show that fig o (x ©® h) < (, using the additional condi-

tion () in the definition of a-minimal evaluator. For an arbitrary n € (T, X)
suppose fipo (x @ 1)o(1@n) < (¢, ie. fioo(x©n) <¢. Then

froo(x ©1) o (10 froSf(moa)= fioo (10 fH)o(x®SF(n)o(10a)

= f*o[1,5f (fi0)]o¥g o (x @S5 (M) e (10 a)

= f* o1, S5 (fr0)] o (ST () + ST (x ©m) 0 dg 0 (10 )

= f* o [SF(x),SF (frioe(x @) e ¥g o (10O @)

=x o(1+S§(froo(xOn)))eo¥5 o (10 a)

<X o(1+55(¢)odg o(10a) < (by (34)).

This proves the hypothesis in (¥) with ¢ = (, whence po (1© h) < (, Le.
fioo(x©h)= froo(x®1)o(10h)=po(lOh)<(.

Theorem 3.1. Let o : By — T be a system with analyzer o : T — SH(T), let
f:S(X)— X be an So-algebra in C such that f, € SA(C), and let h : T — X
be an a-minimal evaluator of f. Then h : P(tV) — f is a morphism in Cs,, 1.€.
(27) holds.

Proof. By Lemma 3.1 fipo (h ® h) is the least solution of
Bo(l+S8F(¢)odfo(10a)<( (35)

with respect to ¢ € C(T' © T, X), where b’ = f* o [ST(h),1]. But the arrow
hou:T®T — X satisfies (35) because

Wo(l+ St(how)o9F o (10a) = F+o[S§(h),SF(ho o o (10 a)
= o SHR) o[, SH(w]o i o (10 a) = f*oSF(R)oaou  (by (32)
< hopu.

Therefore
fioo(h®h) < hop, (36)

which is the same as
foSo(h)olip < ho ™o S(Io, 1) o I1o.
On the other hand, |
foSa(h)olo = fo= N(f)oSo(h)oTo = f* 0 Sf(k)oIoo = f* o SF (h) oo 0o
<hotgo=horNolp=hot" o0S(l,1)0lo
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and
foSo(h)o Ly = fiso R(h) = N(f) o Sp(h)o Iy = f+ 0 S} (h)o Ioy,
= ft oS(')*'(h)ocxof'“ <hofyy=horV o S(lp,1)o Iy,
whence by considering cases
foSo(h) <horNoS(Iy,1). (37)

To prove the reverse inequality, consider the arrows

z=hoty : By —= X
and

fo=Q( f) = ([fo,2], il : S(X) — X.

We shall prove that

froS(h) < horhV. (38)

Indeed, since h is the least solution of (33) with respect to 7, we have f* oS (h)oa =
h, whence

z=hoty = ftoSf(h)oaoty =ftoSt(h)olyoo=hoo
and
froS(h)o Iy = froly=/|fo,z] =[fo,hoo0]
=[ft o SF(h)oIoo, ft 0 ST (h) oI 00]
= [ft o S§(h) ooy, fToSf(h)oaor]
= ftoSH(h)oaomolly,I]
= f+osg'(h)oa01"o =hoty=hor¥ol.
Again, as before,
fhoS(h) o 11 = fir 0o R(h) :f"'oSg(h)oaohl =hot=hot" ol
and the inequality
froS(h)olip <horN ol
is the same as (36). Thus (38) is proved by considering cases. A composition of
the last one with S(v) yields
froSthov)<hor¥oS(W)=hovor
(we use (14)), whence follows the inequality
fo<hov (39)
for the evaluator f : T — X of the algebra f : S(X) — X with respect to the

least fixed point 7 : S(7') — T, using the supposition that the least fixed point 7 is
proper one. We shall prove the reverse of (39) by showing that

h< fyou (40)

Indeed, the algebra f; belongs to D and by Propositions 2.1 and 2.2 the normal e-
valuator hy of fj exists, and by Corollary 2.1 (¢') hyo = fi, whence by Proposition
2.3 hy = frot. So fotisa morphism 7V — f in Cg, i.e.

fhotorN.—_fh oS(thL),
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and composing the last equality from right with S(Ip, 1), we obtain
fa OLOTNOS(Io,l) = foSo(fh o).
Moreover, using the inequality fi o ¢ < h which follows from (39), we have
frotoo < fioazx: [fo~,:c]oIl =ff' o Io1 = fn o S(fa) o Iy,
= fhoTolpt = froN(1t)oS(t)o Iy, = frotoy.
Thence by Proposition 3.2 it follows
ft o.S'a"(fh ol)oa< frou,

and since h is the least solution of (33), this implies (40). Using Corollary 2.1(a),
from (40) we obtain the reverse inequality of (39):

hobﬁfhotoz}thouth.
Thus we get the equality hov = fx, whence it follows
horNoS(W)=hovor= fyoS(ho?),
and composing this from right with S(Ip, ¢), we obtain
hot" 0 S(Iy,1) = f o So(h).

4, CODING FORMALIZM AND CODE FACTORIZATION
OF THE MINIMAL EVALUATOR

The code evaluation method in algebraic recursion theory uses coding to ob-
tain certain simple standard expression for the minimal evaluator of a system of
inequalities. In the context of the previous Section 3 the last evaluator may be
defined as the evaluator with respect to the least fixed point 7 : S(T) — T of
the algebra Q(z, f), where f : So(X) — X is an Sp-algebra in the SRC C and
z : By — X is the least solution of a ‘system’ ¢ : B — T in the algebra f. In
the present section we propose a conceptual mechanism for treatment of coding on
categorical level in the context of Section 3. We give also an interpretation for the
case of SRC of posets, which shows how usual coding theorem in operative spaces
. (in the sense of [1]) can be obtained as a special case.

We assume suppositions and notations of Section 3, especially, we shall have
fixed a partially ordered SRC (€, ®, a, R, ¥r). In the special case with € — the cat-
egory of posets, ® and @ — the usual product x in € and the natural isomorphism
of associativity of x, respectively, R(X) — the Cartesian square X x X, and dpg
— the natural transformation defined as in the SRC of sets in Section 2, we shall
call the 5-tuple (C,®,a, R,Yg) the ‘SRC of posets’. It is a partially ordered SRC
with respect to the obvious order mentioned in Section 1. We fix also an Sp-algebra
f:5(X)— X. ’

Consider a set = of natural in Y € C transformations §é : Y —- X OY. We
shall say for an endofunctor F' : € — € that the last one is linearized by a natural

70



in Y € C transformation A : X © F(Y) — F(X ®Y) with respect to = iff for all
€ € = we have

F(€) = Ao,
which is a short one for the equality
F(§(Y)) = MY) 0 &(F(Y)),

expressing the commutativity of the diagram

§

F(Y) X 6 F(Y)
F(f)\ J,\
F(X0Y)

forall Y € C.

For example, in the SRC of posets the endofunctor R is linearized by the
natural transformation 9r with respect to the set of all natural transformations
£:Y = X xY of the form £(y) = (z,y) for fixed z € X.

In the general case, the set = is partially ordered in a natural way:

§ <& <= VY e C{(Y) <£'(Y)).

Given a C-morphism ¢ : X — X such that (9 ©® 1) o€ € Z for all £ € E, we may
consider the inequality

(901)0f <¢ (41)
with an unknown £ € Z.

Definition 4.1. An element w € = will be called ®-pseudominimal solution of
(41) for a subset ® C C(XOT, X) iff w is a solution of (41), i.e. (901)ow(Y) < w(Y)
for all Y € €, and the following two conditions hold for all C-arrows x : 7" — X
and ¥ :TOT — X and all p € &:

VEEE(pof<x = po(g01)oé<x) = pow<y, (*')
VEEE(P' 0(10E) <Y = ¢ 0(lO(gO1)0f) <Y) = ¢ o(10w) <, (¥)

where ¢’ = fio 0 (x © ¢).

A remark on notations. As usual, we do not write the arguments in a
natural transformation; e.g., writing ¢ o £, we mean this instance of £ which makes
it composable with ¢; in this way £ in (*') and (¥") is §(T) and w is w(T).

Definition 4.2. Let = be the set of natural transformations§ : Y — X @Y as
above, and let g : X — X be a C-arrow such that (9g01)of €= forall§ € E. Let
also o : B — T be a ‘system’, i.e. an C-arrow with analizer a : T'— Sg (T'). Then
by coding for the system ¢ in the algebra f : So(X) — X with respect to = and
g we mean a pair (k,A]) consisting of an C-arrow & : X © T — X and a natural

transformation
A X0S5(Y)— Sf(X oY),
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which linearizes Sg with respect to =, such that the following equality holds for
the coding morphism «:

ko(g01)= [t oSF(r) oM o (10 a). (42)
XoT 901, xo7 X
10a £+
X ©SFH(T) S — SHXOT) 5 () Sy (X)

Theorem 4.1. Let (k,A]) be a coding for o : By — T in f:S(X)— X
with respect 1o =, g be as in the previous definition, and let w € = be a {K}-
pseudominimal solution of (41). Then the morphism kow : T — X is an a-minimal
evaluator of f, where o ts the analizer of o.

Proof. The proof is rather straightforward:
froSH(kow)oa= ftoSt(k)oAf owoa  (because A linearizes Sy )

= ftoSt(k)o Al o(1®a)ow (since w is natural)
=ko(g®1l)ow (by (42))
< Kow (since w is a solution of (41)),

i.e. Kow is a solution of (33). To show that it is the least solution of (33), suppose
k 0 & < n for an arbitrary solution 7 : 7" — X of (33) in €(T', X) and an arbitrary
¢ € Z. Then

ko(gO1)o€=froSf(k)orfo(lOa)o  (by (42))
= ftoSf(k)oAf okon (since & is natural)
=ftoSt(koé)oa (because A} linearizes S7)
< f*oStnoa<n.
This proves the hypothesis in (#') for ¢ = & and x = 7, and since w is a {«}-
pseudominimal solution of (41), we obtain kK ow < 7. Therefore k ow 1s the least
solution of (33). To check the condition (x), take arbitrary C-arrows x : T — X
and ¥ : TOT — X, let ¢ = fipo(x ® 1) and suppose also that for every C-arrow
n:T—X
o(10n) <Y = po(10ftoS5(noa)< . - (43)
We have then to prove that
po(lOkow) < Y.
For an arbitrary £ € = suppose o (1 ® k) o (1 ®&) < 3. Then by (43)
po(10 [ 0Sf(xo€)oa) < ¥,
and therefore
po(10K)0(10(gO1)ol)=po (10 ffoSf(k)orfo(10a)of)
=po(1® ftoSH(k)oAfoloa)
=po(10 ftoSf(kog)oa) <,
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which proves the hypothesis in (+”) for ¢’ = fip0(x® k) = po(l®k), and since w
is a {x}-pseudominimal solution of (41), we conclude that po(1® &)o(1 Ow) <Y,
i.e. po(l O kow) <. Therefore k ow is an a-minimal evaluator of f.

Now consider the special case with the SRC (€, x, @, R, JR) of posets. Take an
operative space X 1n the sense of Ivanov [1]. This is, up to notational variations, a
partially ordered algebra X with two binary operations — multiplication (denoted
in the usual way: zy is the result of applying this operation on z,y € X) and
pairing (notation: [z,y] for the result of applying this operation on z,y € X) and
three constants e, 2g, 2; such that the multiplication is associative with the unit e
and the following three equalities hold for all z,y, v’ € X:

2y, y] = [zy, 2yl [z, ylio=2;  [z,y)i =y

Consider also a set By € € with the trivial partial order (coinciding with equality)
and a mapping fo : Bo — X. The set By is supposed to contain three different
elements regarded as symbols for the constants e, 2, 2;, and fy is supposed to
map those symbols on those constants, respectively. The other elements of By are
treated as parameters. The mapping fo and the space X determine an Sp-algebra
[ S(X) — X in C such that fio and f;; are multiplication and pairing in X,
respectively. As in Section 3, we consider also a set B; with the trivial partial order,
the elements of which are treated as variables. The sum (i.e. the disjoint union)
B = By + B; has also the trivial partial order, and such is the order in the objects
T and T of the least fixed points 7 : S(T) — T and 7 : S(T) — T, respectively,
the elements of which are all terms and normal terms (in the sense, for instance, of
[5]), respectively.

Take for = the set of all natural in Y € € transformations £ : ¥ - X x Y
defined for all Y € C and ally € Y by

() = (z,), (44)

where z € X. In the category C of posets = and X are isomorphic — the obvious
isomorphism assigns to each £ € = the unique z € X for which (44) holds for every
y € Y and all Y € C. This isomorphism transforms the inequality (41) into the
inequality g(z) < z with one unknown z € X for every C-arrow (i.e. an increasing
mapping) ¢ : X — X. The notion of the ®-pseudominimal solution of (41) is
transformed as follows.

An element w € Z 1s a ®-pseudominimal solution of (41) iff every subset J C X
of one of the following two forms:

{ {z € X | p(z,t) < x(t) for all t € T},
{z € X | x(s)p(z,t) < y(s,t) forall t,s € T},

where p € ®, x : T — X and ¥ : T'x T — X are arbitrary C-mappings, which is in-
variant with respect to g, 1.e. g(J) C J, contains the element w € X corresponding
tow (i.e. w(y) =(w,y) forally€Y and Y € C).

Take for @ the set of all mappings ¢ : X x T"— X of the form <p(:c t) = zk(t),
where k : T — X is an arbitrary function (since the order in 7' is trivial, all
such functions belong to C); and take for ¢ the mapping g : X — X defined by

(45)
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g(z) = e, z]r, where r € X. We shall call an element w € X an iteration of r ¢ X
iff g(w) = w and w € J for every set of one of the forms (45) such that g(J)cJ.
The supposition that every r € X has an iteration is a possible version of the notion
of iterativity for the operative space X. (This version differs from the version of
Ivanov in [1] and is close to the version in [5]. However, it is a natural version
— the examples of iterative spaces in [1] are typically iterative in this sense also.)
Therefore, supposing the space X iterative in this sense, we have that for every
mapping g of the form g(z) = [e, z]r there is a ®-pseudominimal solution w € X
of (41).
Next define the natural in Y € € transformation

X XOSH(Y) - S5F(X oY)

by

M =((r+(@+9r)0bp)0bp +1)0éy,
where 7 is the projection X x Bo — By. A direct checking shows that AZ linearizes
Sg with respect to =. For the coding morphism x : X x T' — X we have to ask
that k € ®, i.e. £ = fioo (1 x k) for a suitable k : T — X, and that the coding
equality (42) is satisfied. In terms of elements, the last equality is equivalent to the
following five ones:

g(2)k(d) = fo(b) for all b € By,
g(2)k(v) = zk(o(v)) for all v € By,
g(z)k(tb) = zk(t) fo(b) for allt € T and b € By,

g(z)k(tv) = zk(u(t, o(v))) forallt €T and v € By,

9(z)k([t, s]) = z[k(t), k(s)] for all t,s € T'.
Here we use short notations for terms in T: b for To0(b), v for 791(v), tb for
710(t, Too(b)), tv for 7o(t, 701(v)), and [t,s] for #1;(t,s). The mapping o repre-
sents a system of inequalities: o(v) < v (v € By). The last five equalities follow
easily from the following ones:

rk(b) = tofo(b) for all b € By,
rk(v) = t1k(c(v)) for all v € By,
rk(tb) = i1k(t) fo(b) for all t € T and b € By,

rk(tv) = 4, k(u(t, o(v))) forallt € T and v € By,
rk([t, s]) = 41 [k(2), k(s)] forallt,seT,

and when the last ones are fulfilled, we say that k£ and r provide a coding for
the system o with respect to fo (compare with the notion of coding in [5, 6]); they
can be satisfied comparatively straightforwardly, using a representation of primitive
recursive functions and a weak form of axioms for the translation operation (see [5]).
This construction of coding combined with the code evaluation theorem implies
easily all basic facts of algebraic recursion theory in operative spaces. The last
theorem states that if k¥ and r provide a coding for a system o and w 1s iteration
of r, then the mapping = : B; — X defined by z(v) = wk(v) is the least solution of
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the system o; and it follows from Theorems 4.1 and 3.1. Indeed, by Theorem 4.1
kow = fioo(l X k)ow is an a-minimal evaluator of f, where w(y) = (w, y) for all
y€Y and all Y € €. Thus, for t € T we have (k ow)(t) = fio(w, k(t)) = wk(t).
By Theorem 3.1 k ow is a Cg,-morphism, whence by Proposition 3.2 it is the least
such morphism h : P(tN) — f satisfying the inequality

h(e(v)) < h(v) = h(701(v))
for all v € B;. Thence it follows that the mapping r : B, — X defined by
z(v) = (k ow)(v) = wk(v) (i.e. the ‘restriction’ of h on Bj) is the least solution
of the system represented by o, since every mapping z : B; — X can be uniquely
extended to a Cg,-morphism h : P(r¥) — f, the mapping h : T — X assigning to
each term £ € T its value under the evaluation provided by z.

In this sense the theory of operative spaces is a special case of the results of
Sections 3 and 4. The natural categorical generality for the last theory being thus
reached, various other special cases may be expected to be of interest. Especially,
we shall mention one of them, which is connected with an attempt by Petrov and
Skordev [4] to generalize Skordev’s theory of combinatory spaces for some kind of
category-like partial ordered structures in which the role of multiplication is played
by a composition of arrows. This special case is obtained by applying the theory
of Sections 3 and 4 to an SRC (C,®, a, R, Jg) in which € is a suitable subcategory
of the category of directed graphs and ® is the product xo over a fixed set O
of objects in the terminology and notations of {2]. It may be optimistically said
that in this way a theory of that kind, which was aimed at by Petrov and Skordev
in [4], may be reached in full (in [4] only a part of the desirable results has been
reached, especially, the corresponding analogue of the recursion theorem has not
been obtained). We are leaving this topic for the possible further publications.
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