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1. Cartesian linear combinatory algebras (shortly CLCA) were introduced in
[1]; the principal objective was to provide a theoretical example to be compared
with other partially ordered algebras used for abstract axiomatical treatment of
the fundamentals of recursion theory. In the present note we are going to give an
improved exposition of principal results of [1], which is based on replacement of the
concept of iterative CLCA with that of strictly iterative one.

Let F= (|91, <, &pp, O, A, C, K, C', D') be a Cartesian linear combinatory
algebra in the sense of [1]; App is the application operation and we write as usual 9
for App(¢, %) and adopt the other traditional notational conventions for application
(association to left, etc.). By definition this means that |F] is a set partially ordered
by <, App is a binary operation in |J] increasing on both arguments, O is the least
element of || with respect to <, and A, C, K, C’, D' are elements of |F| such that
the following equalities hold for all ¢, ¥, x € |F]:
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D'00 =0; Apyx =¢(¥x); Co¥ =vp; Ko = gp;
and
C'e(D'yx) = p¥x.

We shall write F for |¥| below, and we shall use some other notations and termi-
nology from [1]. Especially, for any set € of operations in F (which may include
elements of F considered as operations of zero arguments) an element of F or an
operation in F will be called C-expressible iff it can be defined by an explicit ex-
pression containing application and operations from C.

A set A will be called an admissible iteration domain (of first, second, etc.
kind, respectively) iff it has one of the following four forms:

NA={(€T|&p <y}

) A={(¢9)eEF|E<I&DOI<I & V< Y);

iii) A= {(£,9,n) €F° [ <I & I < xnd & D'y’ < y'};

iv) A={{eTF| D¢ < 4},
where @, ¥, x, ¢, ¥’ are elements of F such that D'Oy’ < ¢/,

A CLCA 7 will be called strictly iterative iff for every ¢ € F the inequality
p€ < § has the least solution I(p) € F with respect to £ such that the following
three conditions are fulfilled:

I;) For every admissible iteration domain A of first or fourth kind such that
@A C A we have I(p) € A;

I) For every admissible iteration domain A of second kind and every a € F
such that (o€, ad) € A for all (§,9) € A there is ¥’ € F such that (I(¢), ¥') € A;

I3) For every admissible iteration domain A of third kind and every F-expres-
sible mapping ' : F — ¥, and every o € 7, if (€, a9, I'(n)) € A for all (€,9, 1) € A,
then there are ¥',n' € F such that (I(y),?’,7') € A.

The element I(y) will be called iteration of ; it is the least fixed point of the
mapping § — ¢§.

This notion of strict iterativity is clearly first order formalizable, while the
previous notion of iterativity of a CLCA in the sense of [1] is not. It seems, how-
ever, that a formalization of I3) would require infinitely many (first order) axioms,
because it involves arbitrary F-expressible mappings I'. This is not really the case,
since we may safely restrict condition I3) to mappings I' of the form I'(§) = &€
(for fixed ¢ € F) only, as it will be explained below in Remark 1.

The next Proposition 1 is an analog of the usual criteria of iterativity in alge-
braic recursion theory; it shows that in typical cases CLCA will be strictly iterative.

Proposition 1. Let F be a CLCA and let k be a cardinal number such that

sup g; ezists for all increasing (ransfinite) sequences p; € F and all ordinal num-
i<l
bers I < k. Suppose at least one of the following two conditions holds:
1) k = w and sup pp; = psup ¢; for all increasing sequences wi in F and all
i<k i<k
p €T,
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2) cardF < k and the following equalities hold for all increasing transfinite
sequences @; in F, alll < k and all p € T

2a) sup(piy) = (sup ¢i)¥;
1< i<

2b) sup D' = D'(sup p;)¥;
i<l i<l

2¢) sup D'ypi = D'yp(sup ;).
i<l <!

Then T is strictly iterative.

Proof. In the case of condition 1) we define by induction o = O and ¢n41 =
ppn, where @ is a fixed element of F. The usual argument shows that the sequence
@n increases and I(p) = sup ¢, is the least solution of @€ < € with respect to £ in

n<w

F. If A is an admissible iteration domain of first or fourth kind such that pA C A,
then by induction on n we have ¢, € A. Indeed, O € A since D’OO = O and
0B = O for all B € F, because Of < KO = O, and the induction step is obvious.
Using the supposition that increasing suprema commute with application, we get
I(¢) = sup ¢n € A. (Note that condition 1) implies sup(¢n¥)) = sup(Cvpn) =

n<w
C sup @n = (sup ¢n)¥.) To show that condition I3) holds, consider an admissible
iteration domain A of second kind and an element o € J such that

(€,9) €A => (pf,a¥) €A

for all £,9 € F. Define inductively ag = O and ap41 = aan. The sequence oy, In-
creases and a,, = sup o, exists in F. Since obviously (O, O) € A, we have by induc-
tion on n that (¢n,@n) € A, whence, using condition 1), we obtain (I(¢), aw) € A.
In similar way we see that condition I3) holds: for an admissible iteration domain
A of third kind and an element o € F and a mapping I' : F — F such that

(€,9,n) €A = (p€,ad,T(n) €A

we define a, as before and 7, as I'™(O) and prove by induction on n that
(¢n, @n, Tn) € A, whence (I(p), aw,sup7s) € A.

In the case of condition 2) the usual Platek argument holds. We define by
transfinite recursion a sequence ¢; € F (i < k), and prove simultaneously that
@i = suppp;, pi < ppi, and (p;j)j<i increases for all 1 < k. Then I(¢) = ©m,

i<i
where m is the least ordinal number for which ¢ = @m41, is the least solution
of p€ < € with respect to & in F. To show that condition I;) holds, we prove by
induction on i that ¢; € A for all ¢ < k and every admissible iteration domain
A of first or fourth kind such that A C A, using 2a)-2c). Then I(p) = pm €
A. For condition I5), given an admissible iteration domain A of second kind and
an element a € F such that (£,9) € A implies (p€,ad) € A for all §,J € 7,
we construct in a similar way a transfinite increasing sequence a; € J such that
a; = sup aq;j for all ¢ < k, whence, using induction on i, we see that (pi,i) €A
j<i
for all i < k and therefore (I(¢), am) € A. Finally, given an admissible iteration
domain A of third kind, an element o € F and an expressible mapping I' : F-F
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such that (¢,9,n7) € A implies (€, ad,T'(n)) € A for all £,7,9 € F, we define

transfinite increasing sequences a; as before and y; = sup I'(y; ) (using monotonicity
i<i

of expressible mappings I'), and prove by induction on 7 that (¢;, a;,v;) € A for all
i < k, whence (I(p), am,m) € A.

Proposition 1 is applicable to all the examples of CLCA in [1] and shows that
these CLCA are strictly iterative; particularly, the algebras F in the examples 1 and
2 in [1] satisfy condition 1) in the last proposition, and the algebras F in examples
3 and 4 in [1] satisfy condition 2) of the same proposition.

Let us note in this connection that the Proposition 5.2 in [1], treating the
same question of general iterativity criteria, is incorrect. A correct version of this
proposition would be that a CLCA is iterative if it satisfies the conditions of the
above Proposition 1 in such a way that 1) in the last proposition holds. However,
this correct version does not imply the iterativity of the CLCA F in the examples 3
and 4 in (1], and the last CLCA are indeed non-iterative. Thus the notion of strict
iterativity provides also the necessary improvement to comprise these examples as
well.

Theorem 1. Let F be a strictly iterative CLCA and let C C F. Then for
every C-expressible unary operation I' : F — F the least fized point of ' exists and
is CU{A, C, K, C', D', I}-ezpressible.

Proof. The proof begins as that of Theorem 5.3 in {1]; using a short notation
" (€) for w(p(...p(p)...)) (where we have n occurrences of ¢ and ¢,& € F are
arbitrary) and the basic equalities for the constants A, C, C’, D’ in the definition
of CLCA, we find an CU {A, C, C’, D'}-expressible element e € F such that for
all p, Y, V€ TF

crd((D'p)*(¥)) = D'T(p)(99),
where k is the number of occurrences of the variable (for) £ in the explicit expression
defining I'(¢). Next we define ¥ = [(cr) and V(¢) = I(D'¢) and prove that for all
pETF
V(T'(p)) = 1V(p). (1)

This is done by making use of strict iterativity of F, especially condition I;). Name-
ly, the set

Ao ={£ € F|£V(p) < V(I'(p))}
1s an admissible iteration domain of first kind. If £ € Ay, then
créV(p) = ecré((D'9)* (V(9))) = D'T(9)(EV(9)) < D'T(9)V(I(p)) = V(I(p)),

since V(p) = D'eV(p) = (D'p)*(V(p)), because V(¢p) is the least fixed point of
the mapping £ +— D'¢€. Thus cpAg C Ao and by condition I;) v = I(cr) € Ao, i.e.

1V(p) < V(I'(p)).

The reverse inequality follows from
D'T(#)(vV(9)) = erv((D'¢)*(V(9))) = er7V(p) = 7V ()
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and proves (1). Then for an arbitrary £ € F such that I'(§) < £ we have
YV (€) = V(I(€)) < V(§),
whence I(y) < V(£) and
Li(y) < LV(§) = L(D'EV(£)) =¢
(where L = C'K and therefore L(D'py) = ¢ for all ¢, 9 € F).

Therefore it remains to show that ['(Ly) < Ly, where we are writing shortly
p for I(y). For this we show first that

D'Op < p. (2)
Indeed, consider the set
A={ENEF|E<I&DOI<I &I <p).
It is an admissible iteration domain of second kind. To apply condition I;) suppose
(£,9)€ A, ie. £ <V, D'OJ < ¥ and I < p. Then we have v¢ < 49 and
v < yp =vI(y) S Ky) = p.

Moreover, by induction on n we see that for all natural n

(D'OY*(9) < 9,
and using the definition of cr we have

D'O(v9) < D'T(0)(v9) = cry((D'0)*(9)) < eryd = 7.
So we see that (v€,y9) € A. Then by condition I3) (u4,d) € A for some § € J,
whence we obtain (2). From (2) it follows that the set
B={(9,neEF|E<I&ILD'nd & D'y < p}

is an admissible iteration domain of third kind. To apply condition I3), suppose
(€,9,n) € B,ie. £ <9, 9 < D'nd and D'nu < p. Then 9§ < 7Y and by induction
on n we have

¥ < (D'n)"(9)
and

(D'n)™(n) S p
for all natural n, whence

y9 < y((D'n)k(8)) = ery((D'n)*(¥)) = D'T(n)(79)
and
D'T(n)u = D'T(n)(yn) = ecrv((D'n)*(w)) < cryn = T = p.
Therefore (v€,v9,T(n)) € B, and by condition I3) (u,9,n) € B for some 9,7 € F.
Thus we have p < 9, 9 < D'nd and D'np < p, whence Lp < LY < L(D'nd) = ¢
and
D'(Lp)u < D'np < p.

By definition of the operation V this inequality shows that V(Ly) < p, whence

by (1)
V(I(Lp)) = yV(Lp) < vp = 4,

and
[(Ly) = L(D'T(Lu)V(T(Lp))) = LY(T(Lp)) < L.
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2. Let JF be a strictly iterative CLCA and define V as in Section 1. Then we
have

Theorem 2. There is an {A, C, C', D', T}-ezpressible element § € F such
that for all p € F we have
8V(p) = D'V(p)V(¢).
Proof. Using the basic equalities in the definition of a CLCA, we define two
elements Dy, Dy € ¥ such that
Di&n(D'9o¥1) = D'(D'€J0)(D'nd;)
for all £,n, 90,9, € F, and
Dy§(D'E(D'nC)) = D1én(¥C)
for all £,7n,9,( € F; and let § = I(D2). To prove the inequality
D'V(p)V(p) < 6V(p), (3)

consider the set
A={6e€TF| D' <6V(p))

which is an admissible iteration domain of fourth kind. We shall show that D'pA C
A. Suppose € € A. Then

D'(D'p€)(D' ) = Dypp(D'€€) < D1pp(§V(p)) = Da8(D' (D' oV ()))
= D26V (p) = 6V (),

whence D'p¢ € A. By condition I;) V() = I(D'p) € A, which proves (3). To
prove the reverse inequality, consider the admissible iteration domain B of first
kind defined by
B={(€TF|{V(p) < D'V(p)V(p)}.
Then for £ € B we have
D36V (p) = D2b(D'p(D'pV(9))) = D1pp(EV(p)) < Dipp(D'V(p)V(p))
= D'(D'eV(p))(D'9V(p)) = D'V(p)V(yp),

which by definition of B means that D;§ € B; thus we have D,B C B and
6 =1(D,) € B.

Corollary 1. There is {A, C, C', D', [}-ezpressible kK € F such that for all
@ € F we have

KV (p) = V2(p) = V(V(9)).
Proof. Define D3 € JF so that the equality
Dyd(D'n¢) = D'n(4C)
holds for all 9, 7,{ € F. Next define §; € F to satisfy
6,9¢ = D9 (5€)
for all 9,€ € F, and define k = [(6;). Then
KY(¢) = 616V(p) = Dar(8V(p)) = Dax(D'V(p)V(9)) = D'V(9)(xV(9)),
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whence
V3(p) < £V(p).

To prove the reverse inequality, consider the admissible iteration domain of first
kind A ={£ € F| €V (p) < Vz((p)}. If £ € Ay, then

616V (p) = D3€(6V(p)) = D3€(D'V(p)V(p)) = D'V(p)(EV(p))
< D'V(p)V3(p) = V¥(9p),
which shows that 6,£ € A;. Thus §;.4; C A; and k = (6;) € A,.

The next theorem is Lemma 5.5 in 1], stated for strictly iterative CLCA instead
of iterative ones.

Theorem 3. There are {A,C,C’, K,1}-ezpressible. € F and {A,C,C’, D' 1}-
expressible p € F such that for all o, € F the following two equalities hold:

(a) V(p) =1(y);

(b)  uV(p)V(¥) = V(p¥).

Proof. There is an {A, C, C'}-expressible element e € F such that for all , 7,
¢, (" in F we have

eén(D'¢(") = &((n¢’).-
We shall show that for all ¢, x € F
I(ex)V(p) = I(xyp)- (4)
Indeed,
xe(I(ex)V(p)) = exI(ex)(D'oV(p)) = I(ex)V(yp),

whence I(x¢) < I(ex)V(p). To prove the reverse inequality, consider the admissible
iteration domain A of first kind, defined by

A={£e€TF|EV(p) <I(xp)}.
If £ € A, then

extVp) = ex€(D'eV(p)) = xe(EV(p)) < xel(xp) = I(xp),

i.e. exé € A. Since JF is supposed strictly iterative, this implies I(ex) € A, which
means that I(ex)V () < I(x¢) and proves (4). For ¢ = l(el), where I = A(CA)K,
this gives the equality (a) of the theorem. To define y, consider an {A,C, C’, D', I}-
expressible element b € F such that for all €, 5, {, ¢’ in ¥ we have

b¢n(D'¢C") = D'(€0)(nC).-
The equalities
D' (p9)(L(bp) V(%)) = bpl(bp)(D'¥V () = Kbp)V(¥)

show that V(pv) < I(bp)V (%), and the reverse equality follows from the inclusion
bpB C B for the admissible iteration domain B of first kind defined by

B={§€TF|EV(Y) < V(py)}).
Indeed, for £ € B we have |
b€V () = bp€(D'yV(¥)) = D'(p¥)(EV(¥)) < D'(p¥)V(p¥) = V(p¥),
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i.e. bpf € B. Therefore I(bp)V(¥) = V(p9), and defining u = I(eb), we obtain
from (4) the equality (b) of the theorem.

Corollary 2 (First normal form theorem). There is an element A € 7,
recursive in {A, C, K, C', D'}, such that for every recursive in € C F mapping
[':F — F there is an CU{A, C, C', D'}-expressible mapping A : F — F such that
I'(&) = AI(A(€)) for all € € T.

Proof. By Proposition 1.2 in [1] and the proof of Theorem 1 we have I'(¢) =
L(LI(I(cr))) for suitable CU {¢}-expressible mapping I : F — F. It is clear by the

definition of ¢ in the proof of Theorem 1 that ep = A’(€) for certain C-expressible
mapping A’ : F — F and all £ in F. Then by Corollary 1 and Theorem 3 we have

L(€) = LILEVEV(A'E))) = LIL((1V()V2(A(€)))))
= ALL(A(pV(1))(xV(A'(€)))) = A(ALL)(A(uV (2)))(kV(A'(€)))
= A(A(ALL)(Au(pV (:))))sI(D' A’ (€)),
and we can take D'A’(€) for A(¢) and A(A(ALL)(Au(uV(1))))x for A.

Corollary 3. The algebra F is a combinatory algebra with respect to the
application operation App, defined by App(yp,¥) = ¢V(¥), and with recursive in
{A, C, K, C'", D'} combinators.

Proof. This follows from Propositions 1 and 2 in [2] and [3], since V is a ‘DW-
producing’ operator (a storage operation would be a better terminology) in terms
of (2]. By definition, the last means that there are five constants I*, M*, Q*, P*,
D* in F such that the following five equalities hold for all p, 9 € F:

I'V(p) = ¢; (5)
M*V()V(¥) = V(py); (6)
Q*V(p) = V(p); (7)
P*V(e)y = ¢; (8)
D*V(p) = Dy, 9)
where D is an {A, C}-expressible element of F such that
Depx = xey

for all ¢, ¥, x in F. We may find such elements I*, M*, Q*, P*, D*, as follows.

Define I* = L; M* = p (the element defined in Theorem 3); Q* = x (defined by

Corollary 1); P* = A(AR)D', where R is an {A, C, K, C'}-expressible element of

F such that R(D'¢n) = n for all ,n € F; and define D* by the condition that
D*(D'¢n) = C'D(D'¢(Ln))

for all £,n € F. Then the equalities (5)-(7) are immediate and for the last two ones

we have

P*V(p)¥ = AR(D'V(p))¢ = R(D'V(p)¢) = ¢
and
D*V(p) = D*(D'pV(p)) = C'D(D'¢(LV(p))) = C'D(D'pp) = Dpep.
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The equalities (5)—(9) form with the basic equalities for the constants A and C
a combinatory type-free variant of axioms for a ‘decomposed’ application operation
(in the sense of the decomposition of the application first observed by Girard for
his coherence spaces semantics of the typed lambda calculus and used by him for
the development of linear logic). The fact that they imply the usual combinatory
axioms for the operation App can be easily verified by a direct calculation, as follows.

Define
K* = A(AI")P*,

and define S* as a {A, C, I*, M*, Q*, D*}-expressible element such that
S*én¢ = C(Soén)(D*C)

for all €,7,( € F, where Sy is an {A, C, I*, M*, Q" }-expressible element such that
for all €,7,(,9 € F we have

SoénCd = I"E((M ™ n(Q"9)).
Then for all ¢, ¥, € F we have
App(App(K”™,9),¥) = K*V(p)V(¢¥) = AI"(P*V())V(¥)
= I"(P*V(p)V(¥)) = I"V(¥) = ¥;
and
app(App(¢, €), App(¥,()) = ¢V()V(¥V(())
= I"V(p)V ()M V() (Q*V(C))) = SoeV(p)V(¥)V((V(C)
= DV(C)V({)(SeV(p)V(¥)) = C(SoV(p)V(¥))(DV(()V(())
= C(SoV(p)V(¥)(D*V(C)) = S*V(p)V(¥) V()
= App(App(ApP(S”, ¢), ¥),().

Corollary 4 (Second normal form theorem). For every recursiveinCC F
mapping ® : F — F there is recursive in CU{A, C, K, C', D'} element p € F such
that ®(€) = V(&) = QI(D'E) for all€ € F.

Proof. It follows easily from (5) that the original application in JF is explicitly
expressible through application operation App from the last corollary. (Indeed, the
element a = A(CI*)(AAI") satisfies the equality afn = I*{(I*n) for all {,n € ¥,
whence

pp = I'V(p)(I"V(¥)) = aV(p) V() = App(App(a, ¢), ¥)
for all ¢, € F.) Then Corollary 3 implies that every C-expressible mapping
' : F — F is representable in the form I'(§) = yV(£) for certain ¥ € F recursive in
CU{A, C, K, C', D'}. Thence by Corollary 2

®(¢) = M(YV(E)) = AV(YV(E)))

for a similar 9, and by (6) and (7) we get an element ¢ € J satisfying the conditions
of Corollary 4.

Remark 1. The element v in the last proof of Corollary 4 is actually €U
{A, C, K, C', D', I}-expressible and this is seen without using Theorem 1. Then
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the inequality I'(§) < £ being equivalent to YV (£) < &, any inequality of this kind
may be reduced to a system of inequalities of the form

<€ D'én<n, (10)

since the first member &o of the least solution (£, no) of the last system with respect
to €, n is the least solution of YV (£) < & and therefore of I'(€) < €. On the other
hand, it is easy to see that if (o is the least solution of the inequality

D'(y(R¢)) < ¢,

where R = C'K’" and K'¢'n' = 7/ for all ¢',9 € F, then & = L(p and 1o = R(o
is the least solution of (10). Thus, the inequality I'(¢) < £ may be reduced to an
inequality of the form ¢({ < ( for certain CU {4, C, K, C’, D', I}-expressible
v € J. Hence, it would be enough to prove Theorem 1 for mappings of the form
['(§) = €€, for which we need condition I3) for such mappings only.

Remark 2. Admissible iteration domains of fourth kind were used in the
proof of Theorem 2 only. We may exclude them from axioms by the restricting
condition I;) to such domains of first kind. Still all results above remain valid if
we replace the storage operation V with its square V2(p) = V(V(yp)). This can
be shown by using the obvious analogue of the normal form theorem from (1] (for
strictly iterative CLCA instead of iterative ones), which is seen to hold (even after
such excluding of admissible iteration domains of fourth kind) in the same way as
in [1].
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