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This paper describes a set-theoretical argument for proving Strong Normalization (SN)
for the systems of the so-called A-cube. The argument is relatively simple and, more-
over, flexible. It can be adapted to extensions of the systems considered, such as
additional sorts, inductive types or sub-types.

Keywords: typed lambda calculus, normalization, inductive types
1991/95 Math. Subject Classification: 03B15, 03B40

1. INTRODUCTION

In the recent years a lot of attention has been paid to the property of Strong
Normalization for second- and higher-order dependent type systems. The number
of the existing SN-proofs can be informally divided into two groups:

e ‘syntactically-oriented’ proofs—proofs which are based on mixed syntactical
and semantical methods ([6, 5, 3, 14, 15]), and

o ‘semantically-oriented’ proofs—pure semantical proofs ([1, 7, 8, 9, 16]).

Most of these proofs make use of the idea of interpreting all typable terms
as elements of sets of strongly-normalizing terms. Further, one can prove that
a typable term belongs to the interpretation of its type and thus it is strongly-
normalizing. However, semantically-oriented proofs make use of fully-compositional

* Lecture presented at the Fourth Logical Biennial, Gjuletchitza, September 12-14, 1996.
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models, while syntactically-oriented ones are based on models which disregard some
of the dependencies in a typable term. This has several consequences for both the
kinds SN-proofs.

In general, the syntactically-oriented proofs are relatively simple but lacking
flexibility and modularity. It is not easy and sometimes impossible to adapt them
to various extensions such as additional type-constructions, more universes or sorts
or sub-types. Any extension of the systems requires reconsideration and significant
changes in such a SN-proof (see, for example, [14, 15, 13]). Furthermore, the relative
simplicity of such a syntactically-oriented proof is usually lost after adapting it to
a richer system.

Semantically-oriented proofs are based on operational or denotational seman-
tics of the system under consideration (see [7, 1, 8]). These proofs seem to be more
flexible than the syntactically-oriented ones in the sense that they can be easily
adapted to various extensions of the system in question. Furthermore, they suggest
generic methods for normalization proofs of PTSs (see [8, 9, 1, 16]).

However, in order to obtain compositional interpretations, most of them intro-
duce very complicated structures, which are difficult to be mapped intuitively to the
corresponding type system. Most of them use a realizability or categorical semantics
(see (1, 8]) instead of a naive set-theoretic semantics as in the syntactically-oriented
proofs.

The SN-proof considered in this paper combines advantages of syntactically-
and semantically-oriented proofs: simplicity, flexibility and genericity. It can be
classified as semantically-oriented. It is based on a naive set-theoretical semantics
and as so is similar to the syntactically-oriented proofs. The principal difference
with them is that type-dependencies are not disregarded in the interpretations, i.e.,
the interpretations are fully-compositional. This is achieved by defining simultane-
ously the interpretations of types and their elements.

The benefits one gets from this proof are in general the same as those in [I, 8,
9] — extendibility to more powerful systems. However, it is still simpler to interpret
new type-constructors and reductions in the present set-theoretical setting. The
flexibility of the proof presented is shown by extending it to systems with inductive
types. We treat the case of Natural Numbers in the last section.

2. BARENDREGT’S CUBE

In this section precise definitions of the pure type systems in Barendregt’s cube
are given (see also [2]).

Definition 2.1 (PTS-definition). A system of Barendregt’s cube AS is a triple
AS = (7,R,R) such that:

e 7 is a set of pseudoterms defined by the abstract syntax

T :=Var | {0} | TT | \Var:T.T |IVar.T.7T,
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where Var = Var*|JVar® and Var®, and Var® are infinite enumerable disjoint

sets of object and constructor variables, respectively. The object variables will be
denoted by the small Latin letters z, y, z (with or without subscripts) and the
constructor variables — by the small Greek letters o, 8, v. When we do not want
to make a distinction between object and constructor variables, we will use the
small Latin letters u, v, w.

The notions of A-reduction and B-conversion are defined on 7 by the contrac-

tion rule
(Av:T1.T2) T35 —p T2[T3/v];

e R is the set of rules of the system AS and consists of ordered pairs (s, s2),
such that s;,s2 € {*,0} and (*,*) € R;
e R is the set of derivation rules of AS specified bellow.

(aziom) F*: 0O,
(var) l-:-— , s € {x,0}, veVar*\ FV(TI),
vI'tv:T
(weak) Trs: M}_U:, s € {*,0}, veVar\ FV(I),
vTHM:U
Tks: vTHU:s;
(1D Nv:T.U & s2: ’ (s1.8) €R , v € Var™,

vTHFM:U DuvT.UFs:
() ,  s€ {0},
Av:T M v T.U -

MbETw:TU: NEBT:

(app) MNFUN/:

( ) MET: UFs: - U E{ D}

conv =5 U, s € {*,0}.
MFU : 7

The eight systems of the A-cube are listed below (see Table 1) according to the
sets of their rules. The set of (typable) terms of the system AS is defined by

Terms :={T €7 |3L,LU(TFU: orUFT:) }.

It is convenient to divide the typable terms into subsets (see 2, 4]) in the
following way:

Kind(AS) = {A€T|3r(AFD:)},
Constr(AS) = {CeT|3rLA(CHA:):0}
Type(AS) = {c€7 |3l (ok*:)},
0bj(AS) = {t€T |3lo(tho:):x}
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Table 1. The systems of the A-cube

System | (+,#) | (+.0) [ (0,% [ (5,0)
A— X - - -
AP X X - -
A2 b - X -
AP2 X X X -
Aw X - - X
APw X X - X
Aw X - X X
AC X X X X

We will skip the subscript S in the above notations when it is clear which is
the system under consideration.

3. INFORMAL OUTLINE OF THE PROOF

Let AS be a system of the A-cube. Classification of typable terms of A\S into
objects, types, constructors and kinds determines a hierarchical structure which
will be called type hierarchy in the sequel (see Fig. 1(a)). The type hierarchy has
a fine structure — it contains two sub-hierarchies: the one of types and the other
of kinds (see Fig. 1(b)).

Intuitively, every type is the set of objects of this type, and every kind is
the set of constructors typable with it. All of these four levels are connected by
Type C Constr.

The typable terms of the system AS are interpreted in levels according to
their level in the type hierarchy. In fact, the type hierarchy is mapped into a set-
theoretical hierarchy, which will be called AS-hierarchy. The carrier, or the bottom
level of the AS hierarchy is simply the set 7 of pseudo-terms.

Each system AS of the A-cube is determined by its PTS-specification and its
derivation rules. There are two sorts in each of the systems of the A-cube: one of
types (*) and another of kinds (O). Suppose that these sorts are interpreted by
the set-universes U% and Ug. The conditions which U% and U should satisfy are
determined by the rest of the specification of AS, i.e., by its axioms and PTS-rules.

There is one axiom for each AS of the A-cube, namely, * : O. This corresponds
to the requirement Uy € US. Further, suppose that (s1,s2) 1s a rule of AS. That
means that one of the derivation rules of AS is

'FT:sy T,uTHU: s
T+ Ou:T.U : 59 '

This rule says informally that the sort s, is closed under dependent-product terms.
The corresponding “meaning” in the model of this derivation rule would be that
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Fig. 1. The type-hierarchy

the universe U¥ is closed under some suitable operation II31. More precisely, II3!
takes as arguments a set X € U and a family {Yz}-ex of sets of Ug* and returns
a result again in U$*. In order to improve readability, we will denote the application
I35 (X, {Yz}zex) by

iz € X.Yz.

Now, suppose we have found the collections U} and U§ and the operations
I15:. The type-hierarchy of AS is mapped into a set-theoretical hierarchy (AS-
hierarchy) through the interpretation functions [ {2, | [* and [ |° (see Fig. 2). Note
that it is not allowed to construct elements of a lower level of the AS-hierarchy
by means of elements on higher levels (the crossed arrows in Fig. 2). The typing
relation : between legal terms is mapped into the relation € on sets, so that if X 1s
an element on level 7 of the AS-hierarchy, then there is an element Y on level ¢ + 1
such that X € Y.

The typable terms of AS are interpreted as follows:

e Every kind A, (' F A : O) is mapped by the interpretation function I ]? to
an element of U§. Intuitively, dependent kinds are interpreted with the help of the
operations IIg and II, if respectively the rules (x, 0) and (O, O) are present in the
specification of AS;

e Every constructor C, (T C : A : O) is mapped by the function | [' to an
element of the collection

JUuS=1{X132(X €Z A Z€Us)}

in such a way that [C|' € JAJ*. In particular, every type o, (T F o : *) is inter-
preted as an element of the universe Ug. Impredicative types (i.e., types formed
by the rule (O, *)) are interpreted with the help of the operation II2. Pure product
types (rule (*,+)) are interpreted by using II;. Constructors formed by A-abstrac-
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tion are interpreted as set-theoretical functions and applications of constructors to
terms — as set-theoretical applications of functions to their arguments;

e Finally, every objects ¢, (I' - ¢ : ¢ : %) is mapped to a pseudo-term in a
trivial way by using abstraction and application operations on pseudo-terms. For
the interpretations of objects we have [¢]° € [of'.

The interpretations [ [°, | {* and [ |? are compositional, i.e., the interpretation
of a term is built up from the interpretations of its sub-terms by means of proper
operations. For that reason all constructors are mapped into the set of pseudo-
terms, in order to be able to interpret objects of the form Az:a.t as Az:]a°.[¢[°.
This implies that all kinds should be mapped into U% in order to prove proper
inclusion properties for the new interpretations of constructors. To summarize (see
also Fig. 2):

— Every kind 4 is mapped into U% by the function | |! and into 7 by the
function | [°.

— Every constructor C' (' C : A : O) is mapped into 7 by the function [ |°
in a way that [C]° € | A]".

Note that for the systems A — and AP it is not necessary to interpret kinds as
pseudo-terms, but we will do it in order to obtain more uniform treatment for all
the systems of the cube. However, these two cases can be treated separately.

A final remark is that the interpretation functions | |* and ] |! are constructed
simultaneously on the structure of the typable terms. Due to this, it is possible to
keep type dependencies in the interpretations.

4. THE FORMALIZATION

Any system AS of the A-cube is interpreted into ZF-set theory. The typable
terms are interpreted as sets and the typing relation “” as the inclusion relation
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€ between sets. In particular, every object is mapped into a pseudo-term?, every
constructor — into a set-theoretical function, every type — into a set of pseudo-
terms, and every kind — into a set of set-theoretical functions.

Note that the existence of this model does not contradict the result in [11],
which simply says that in polymorphic A-calculus one cannot interpret all abstrac-
tion-terms (i.e., terms of the form Av:Ty.T,) as set-theoretical functions and all
application-terms (i.e., terms of the form 7173) as function-applications. We in-
terpret only the abstraction and application terms which are at the predicative
level of AS as set-theoretical functions and function applications. The terms which
are at the impredicative level are interpreted as A-abstractions and applications of
pseudo-terms.

4.1. PRELIMINARIES

As it has been mentioned before, the set 7 of pseudo-terms will be identified
with the set w. Thus an additional equality to the usual set-theoretical equality on
w will be used in order to represent S-equality. It will be denoted ambiguously by

Definition 4.1. Let a and b be sets. We say that a is v-equal to b (notation
a =, b) iff @ and b are both pseudo-terms or are both sets and:

(1) @ =g b in the case a,b € T;

(i1) a = b, otherwise.

Note that if £, =g t2 and t; € a, it is not necessarily {3 € a. We extend the
equality =, on sequences of elements of U in the following way.

Definition 4.2. Let a, 7 be sequences of elements of U. Then a =, v iff
la} = |y| and (i) =, 7(i) for alli=1,...,|af.

The set-theoretical functions which will be used in the model of AS form a
restricted class of the functions in set theory. They are defined below.

Definition 4.3. Let a and b be sets such that a,b ¢ 7. The set F is a v-
function from a to b (notation F : a — b) iff F' consists of ordered pairs (z, y) such
that

Ve €a 3y, €b({z,y:) €EF)

and
Vzy, 22,91, Y2 (21 =v T2 A {Z1,31), (T2, ¥2) € F = 41 =y ¥2).

I Note that the set of pseudo-terms can be identified with the set w of standard sets representing
natural numbers, so every pseudo-term t can be thought as a numeral n, which is uniquely assigned
to it. For convenience we will use in the sequel the set of pseudo-terms instead of the set w of

their images into ZF set theory.
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Remarks 4.4.

e Let F :a = b. The v-function application is defined in the usual way. That
is, if (z,y) € F, then App,(F,z) =, y. For simplicity the v-function application
will be written as F'(z), since the usual function-application will not be used in the
sequel. Thus, if F(z) is defined, that means that F is a v-function, i.e., it respects

B-equality.
e Let F:a -5 band F(z) =, y; for z € a. This F will be denoted by A\, z€a.y;.

Lemma 4.5. The v-functions F; : a; — b;, i = 1,2, are v-equal, e.g. Iy =, Fy
iff ay = ay and for all z € a,, Fi(z) =, Fa(z).

Definition 4.6. Let a be a set such that a ¢ 7, and let {b;}:¢q be a family
of sets such that b, ¢ 7 for all z € a:

(i) The set-theoretical v-dependent product is defined as
M,z€a.b, :=={F:a > sz | Ve € a (F(z) € b;)}.

re€a

(ii) The dependent sum is defined as
Yyr€a.by := {{(m,n) | m € a,n € by, }.

Note that if F' € [l z€a.b, and =, =, z7, then F(z,) =, F(z,).

Lemma 4.7. Leta,a’ ¢ T and let {b;}z¢ea, {b.}zeqa be families of sets such
that by, b7, ¢ T. Then

N,z€a.b; =g M,z€a" b, < a =p a'&Vz € a (b, =p b).

The hierarchy of sets into which the typable terms (kinds, constructors, types
and objects) will be mapped is specified as follows:

Definition 4.8. For every ordinal number o € Or the sets V,(7) are defined
in the following way:

(i) Vo(T)=T;
(i) Va41(7) = Va(T)UP(Va(T));

(iii) Vo(T) = | J Vs(T) if @ is a limit ordinal.
f<a

Definition 4.9. Let o be an operation which takes as arguments a set and a
family of sets, indexed by this set, and gives as a result a set:

(i) The set A C V4(7) is ae-closed under the operation o if for any set a € A and
any family {b;};¢q of sets from A, the set o(a, {bz}:eq) belongs to A;
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(i1) The set A C Vqo(7) is weakly-a-closed under the operation o if there exists
an ordinal 8 such that § < (@ — 1) and moreover, for all ordinals 7 such that
B < v < a and for any family of sets {b;}z¢aq, for which b; € ANV, (7), the
set o(a, {br }zeq) belongs to A.

4.2. THE UNIVERSE U% AND U2

The interpretation UG of the predicative universe O is chosen to be the set
Vo (T)\ Vi(7).

The next lemma shows that it is weakly-w-closed under the set-theoretical depen-
dent product II, (defined in Definition 4.6).

Lemma 4.10. The universe U is weakly-w-closed under the operation II,.
Proof. We haye to find an ordinal # < w such that for all n > it holds that

N,z€a.b, € US

if a € UY and {b;}zeq is a family of sets such that b; € US NV,(T) for any z € a.
Note that

Ug Uv,,(T) = Vn(T) \ Vl(T).
Now, let us choose 8 = 2. Let a € UY and let n > 2. From the definition of Ug it
follows that there exists a natural number m > 2 such that a € V(7).

The elements of the set II,z€a.b, are v-functions and thus sets of pairs of the
form (z,y), where ¢ € a and y € b;. By definition, a pair (z,y) is a set {z, {z,y}}.
Thus, if € a € Vu(T) and y € by € Vo(T), then (z,y) € Vmax(m-1,n-1)+2(7).
Consequently,

Ilyz€a.b; € vmax(m-l,n-l)+4(T))

and hence I,z€a.b, € UY since obviously

ly,z€a.by € V,(7). n

It is convenient to specify the interpretation U% of the impredicative universe
* to be the collection SATg of (-saturated sets. SATg is closed under arbitrary
non-empty intersections and under an operation of dependent product defined on

the set 7 of pseudo-terms.
Let SNg C 7 be the set of pseudo-terms which are strongly normalizing under

fB-reduction.

Definition 4.11. The set Bg of §-base terms is defined as the smallest set
satisfying the following conditions:

(i.) Var*|JVar® C Bg;
(ii.) If M e Bp and NV € SNp, then MN € Bﬁ.
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Definition 4.12. The B-key-reduction is the relation —kvp defined by the con-
traction schemes for B-reduction and the following compatibility condition:

My L5 My = MN L5 MyN.

Lemma 4.13. If the proper sub-terms of a term M are B-strongly normalizing,
M L5 N and N € SNg, then M € SN,.

Definition 4.14. The set X C 7 of pseudo-terms is called 3-saturated if the
following conditions hold:

(L) X C SNy,
(ii.) Bg C X;

i) IfM 5, N , N € X and the proper subterms of M are f-strongly normaliz-
5]
ing, then M € X.

The collection of all f-saturated sets will be denoted by SATs. Thus one
chooses U* = SATg.

Definition 4.15. The operation II] of dependent product on 7 takes as
arguments a set X C 7 and a function F' : X — P(7) and is defined as follows:

Iime X.F(m):={teT |VYge€ X (tg € F(q)) }.
The operation IIY is defined as intersection of sets. Namely,

MzeXY,= ()Y
zeX

Note that X # @ for any X € U§. The next lemma shows that the universe U},
e.g. SATp, satisfies the necessary closureness properties.

Lemma 4.16. The set SATg is closed under II; and under arbitrary non-
emptly intersections.

4.3. THE INTERPRETATIONS

In this subsection the interpretations | |2, [ |* and | [° are defined (see Fig.
2). For that purpose we need two valuations

¢:Var® —»UU? and p: Var‘UVarD —T

to interpret all constructor variables at the middle level of the AS-hierarchy (see Fig.
2) and all constructor and object variables at the level of atoms. The interpretation
0 |2’ , 1s obtained simply by applying the substitution p on its argument. Thus it
does not depend on the assignment { and for this reason it will be written as | |9.
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The other two interpretations are constructed simultaneously by induction on the
structure of typable terms of the system AS.

Definition 4.17. Let p : Var*|JVar® — 7 be a valuation of constructor and
object variables. The atom-interpretation,

119 {O} | JXind|_JConstr( Jobj — 7,
is defined as || = p(T), where p(T) is the term obtained from T by applying the
substitution p to 7.

Definition 4.18. Let R)s be the set of PTS-rules of the system AS. Let
p: Var'JVar® — T and € : Var® — |JUg be valuations. The constructor-
interpretation of constructor and kinds,

[ ﬂé’p {0} UKindU Constr — UU?,
and the kind-interpretation of kinds,
012, : {0} Jrind — UG,

are defined simultaneously by induction on the structure of the typable terms as
follows:

Sorts of AS:
ﬂ*I?,p - []D|§'p = SATg,
1+1;, = [Blg, = SNs.

Kinds of AS:

o (O, 0) € Ras (A, B € Kind(AS), a € VarD).
Ma:A.BR2, ~ TaelAlf, omelAl; ,1Blg =0 pja=m):

I]HCY:A-BléIp = ﬂ H:meI]Aué,p'nBlé[azza],p[a:::m]'
aclAf7 ,

o (x,0) € Ras (A € Kind(AS), o € Type()S), z € Var®).
Mo AlZ, =~ vaeﬂaﬂé'p.ﬂAﬂ?’pIx:m],

lz0.Al;, = Wim € Joli , 1Al pz=m)-

Constructors of AS:

e Constructor-variables (a € Var®).

lelg,, = €().

27



e (0,0) € Ras (P,Q € Constr(AS), A € Kind()\S), a € VarO).
1PRI, = 1Pk, (1Q1, 1Q1D),
[Aa:A.P), =~ ,\,,aeUAﬂ'g"p./\.,me[]A|é,p.ﬂPﬂ§[a:=a])p{a:=m].
e (x,0) € Ras (P € Constr()AS), t € 0bj(AS), o € Type(AS), z € Var*).
1Pele, =~ (P, (115,
ﬂ/\z:a.Pﬂé’p ~ Avmeﬂaﬂé.p.ﬂPlé'p{z:ml.
e (O,%) € Ras (A €Kind()AS), o € Type()AS), a € Var®).

una:A'alé,p = ﬂ IIime HAIé,p‘"a'é[azza],p[a:zm]'
aelAf? ,
o (x,%x) € Ras (0,7 € Type(AS), z € Var*).

[]H:z::a.r|é,p ~ime []alé.p.[lrﬂé'p[,:m).

Remark 4.19. The equality =~ is the usual Kleene equality as the interpreta-
tions | [ , and [ |} , may not be always defined.

The next lemma says that the atom-interpretations of f-equal terms of AS are
also B-equal.

Lemma 4.20. Ift),1; € Term(S) and t\ =g t,, then [t,]5 =5 It219.

For the interpretations || If »» k = 1,2, the substitution property, which is
stated in the next lemma, holds.

Lemma 4.21 (Substitution). If C € Constxr(\S), t € 0bj(AS), M,M[C/a],

M|[t/z] € Kind(AS) N Constr(AS), then
ko~
IMICTelle, = IMBacyop ) sacmicre)
IMit/2llg, = “le,p[z:q:lg]

for k=1,2.

Lemma 4.22. Let My, My € Constr(\S) UKind(\S). If M, —g My and
IMi[} , is defined, then [ M, I, = IMi§, fork =1,2.

Proof. Let My —5 M. The following cases are treated:

o Let (Aa:A.C)Q —p Cla := Q] for A € Kind()AS) and C,Q,(Aa:A.C)Q €
Constr(AS). Assume that the interpretation [(Aa:A.C)QJ; , is defined, i.e., it is
equal to ﬂCIha =1QI! ] ola:=1QIe] (see Definition 4.18). Thus, from Lemma 4.21, it
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follows that the constructor-interpretation of Cla := Q] is defined and moreover,
it is equal to the constructor-interpretation of (Aa:A.C)Q.

o Let Ct; —p Ctz, where C € Constr(AS) and t;,1; € 0bj(AS), and let
ﬂCt;ﬂ1 be well-defined. That means that §C|1 is a v-function (see Remarks 4.4)
and since [t1]% = [t2]9, it follows that [Ct1[¢ , =p [Ct2[¢ ,.

The rest of the cases are trivial and their proof is similar. We have proved that
if My —g M, and |M;[§ , is defined for k = 1,2, then the interpretation ﬂlefp
is also defined and v-equal to ﬂM;lf’p. . '

Definition 4.23. The object interpretations p; and py are compatible under
the B-equality if for all v € Var, p1(v) =5 p2(v).

The proofs of the next two lemmas are trivial by induction on the structure of
typable terms.

Lemma 4.24. If M € Term(AS) and p, and p2 are compatible object-valua-
tions, then

— 0
IMI;, =5 [MI,,

Lemma 4.25. Let M € Constr(AS)UKind(AS) and let py and p, be compatible
object-interpretations. If the interpretations []Mﬂé"pl and |]M|£‘!p2 are defined (k =
1,2), then

k
ﬂMuf.m =v lMl:-Pl .

We have mentioned earlier that the interpretations of the typable terms should
satisfy some inclusion properties (Section 3). For that purpose, we introduce the
notion of satisfaction of a context I'. In such a way we restrict the possible valua-
tions, so that the interpretations | [¢ , and | [ , are defined.

Definition 4.26. The valuations
€ :Var® —»UUQ and p: Var‘UVar':J -7
satisfy the context I' (notation &, p = T') iff:
(i) for every constructor variable a and kind A, such that (o : A) €T,
&(e) € JAl;, and p(a) € [Ale,,,
(i) for every object variable z and type o, such that (z : o) €T,

p(z) € lolg,,-

Definition 4.27. The (legal) context ' models that the (typable) term M has
a type T (notation I' E M : T') iff:
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(i) if M € 0bj(AS), then for all §,p = T,
M]3 €1T; ,i

(i1) if M € Constr(AS), then for all §,p =T,
IMI; €1Tlg, and |MIg, € ITIE,;

(iii) if M € Kind(AS), then there exists a natural number n > 2, such that for all
&pET,

IMIZ, € Va(T), [M]{,€ SATs and [M]3 € SNp.

Theorem 4.28 (Soundness). If 'FM : T, then T =M : T.

Proof. The proof of 1-3 is done by induction on derivations. The following
cases are treated:

e The ()A) rule. The case when the bound variable is a constructor variable and
the term formed by the A-rule is a constructor (i.e., (0,0) € Rys) is considered.
The proof for all other cases of the A-rule is done in a similar way.

[a:AFP:B T'FIlla:A.B: 0O

' Aa:A.P: lla:A.B
Let £, p = T'. We have to prove that

A:A.Pl}, € [a:A. B[ , and [Aa:A.PJS € [Ta:A.B} .

From the induction hypothesis JAfZ | is an element of Ug, [A]; , is an element of
SATs, and for all a € [A[f , and m € |A]} ,

2 Q
uBBf[a:=a],p[a'=M] € US '
Furthermore, for a € [AJ; , and m € [A[} ,

ﬂpﬂé[a::a],p[a:zm] € uBﬂg[a::a],p[a:m]‘ (l)
From Lemma 4.25 it follows
my =g mz = ﬂpﬂé[a:a],p[at:ml] =v ﬂplé[a:::a],p[azzmg]
for all a € JA[Z , and m;,m; € JAl¢ ,, and hence the function
’\vaeﬂAug,p'AvmeﬂAué,p'ﬂplé[a:za),p[azzm]
is indeed a v-function. Thus, from (1) and by the definition of [Aa:A.P[; , it follows
[Aa:A.PJg , € [a:A.B[Z ,.

To prove [Aa:A.P]) € I]Ha:A.Blé,p, we have to prove that for any a € [A[Z ) and
m € []Al]é,p
[Aa:A.P)m € []Bﬂé[a:

=a],pla:=m]"
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The term [Aa:A.P|Om key-reduces to the term |]P|g[a:=m], which by the induc-
tion hypothesis belongs to the saturated set []Bﬂé[a:m,] pla:=m) @nd hence the term
JAa:A.P|m itself belongs to | Blg,.-4) pa:=m)-

e The (app) rule. Again only the case when the applied terms are constructors
is considered (i.e., (O,0) € Rys). The proof of the other cases is done in the same

or even simpler way.
'FP:Mla:AB:0O THQ:A:0O
' PQ : B{Q/a]
Let €, p = I'. From the induction hypothesis it follows
1Pl € Me:ABE ,, 1Qlg, € 14, and [QI; € [Al¢,-

Thus,
1 2
1PQle., € 1Bleia=10m 100 <1012

From the Substitution Lemma (see Lemma 4.21) it follows
1PQI,, € 1Bl := QI ,.

e The (J]) rule. The case of (O,0) € R)s is considered again. The proof in
the case (*,0) is similar and the proofs in the cases (O, ) or (*, *) follow directly
form the closure properties of SATs (see Lemma 4.16). Let now the last rule in
the derivation of '+ M : T be

'HA:0 T'atAFB:0O
'MMa:A.B: 0O |

Let &, p k= T. From the induction hypothesis it follows that there exist m,n > 2
such that

ﬂAﬂ?,p € Vm(T), uAlé,p € SATﬁ» and "Blg[a::a],p[azzm] € vﬂ(T)

for any a € JA|?, and b € |A]§ ,. Thus [la:A.BJf , is defined and equal to the
set

ITy aeaAI?,p'nvbenA'é,p'“Bug[azza],p[a:b]’ (2)

The elements of this set are v-functions which consist of triples of the form (a, b, ¢c)
with a € JA[Z ,, b € jAl;, and ¢ € BBI?[a:aLp[a:zb]. Thus for any such triple
(a,b,c)it follows a € Vpu—1(7), b € Vo(7') and ¢ € V,_1(7). Note that by definition

(a,6,¢) = {a,{a,{b,{b,c}}}}.
Thus (a,b,¢) € Vipax(n+1,m-1)+2(7 ) and hence
nvae"AIg,p'HvbeuAl%,p'nBﬂg[a:a],p[a::b] € vmax(n—l,m—1)+4(7)-

Consequently,
“HGAB n?,p (S vma.x(n- 1,m— 1)+3(T) .
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o The (conv) rule.
'EM:T TFHU:s

‘TFM:U
Let, for example, U be a kind, i.e., s = O. From the induction hypothesis it follows

BMUG P € I]Tﬂk+1

T=4U.

for £ = 0,1. Moreover, the interpretations []Tl"'H and []UI]"+1 are defined for
k = 0,1. Since the property of confluence holds for fB-conversion on the set of
pseudo-terms, it follows that there exists a pseudo-term V such that ' —4 V and
U -—»5 V. Thus, from Lemma 4.22 it follows

I7IE =0 IVIEE! and UIEE =, [VIEH
for k = 1,2, and hence []T[]"**'1 =y []Ul"+1 Consequently,
“le P € []le+1'

The theorem is proved. =

5. STRONG NORMALIZATION

The property of Strong Normalization for the system AS of the A-cube is ob-
tained as a corollary of the Soundness Theorem.

Theorem 5.1 (Strong Normalization for AS). For every contezt ' of AS and
for every terms M and T, such that '+ M : T, 1t follows that M € SNg.

Proof. We define a maximum element for every kind-interpretation of kinds in
the following way:

maz( SATg) = SNg,
maz([]Ha:A.B[]?p) = /\vaeﬂAﬂf,p.z\umE]]Aﬂé'p.ma:c([]Bﬂ:la:a]‘p[a::m]),
maz(|lz:0. B[ ) = Avom€[ofg,,-maz(|B[Z, plz:=m])-

Let p(v) = v for every variable v, and é(a) = ma:r(l]AﬂE ,) for every (a:A) € T.
(This is possible due to the linearity of the legal contexts.) Obviously, the so-chosen
valuations satisfy I'. From the Soundness Theorem it follows that [M |} € [T} , C
SNg, and hence M € SNg. =

6. INDUCTIVE TYPES

In the following a method for extending the present SN-proof to systems with
inductive types is presented. For simplicity we consider only the system AC. It is
the most general system of the A-cube and all non-trivial cases are captured.
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In order to use a typing system for practical applications, there should be
a certain mechanism for defining data types (e.g., inductive types) in it. The
study of inductive types, however, happens to be a rather difficult task as well for
defining a general inductive scheme as for studying the metatheory of type systems
with inductive types. A general scheme for defining inductive types is presented,
for example, in [10]. Here we will use a particular example, e.g., the type Nat
of Natural Numbers, to show the flexibility of the present SN-proof. The system
obtained from AC by adding the derivation and reduction rules for Nat will be
denoted by AC + Nat.

The main problems for studying the metatheory of AC with inductive types
arise when there are inductive types at the impredicative level of AC (i.e., which
are of type *) and it is possible to define a type (respectively, predicate) over the
elements of some inductive type. That means that for different elements of this
inductive type the elimination scheme yields different types. Thus, the elements
of an inductive type are distinguishable and one can prove inequalities like 0 # 1.
Therefore, the well-known syntactically-oriented proofs of Strong Normalization for
AC and similar systems ([5, 6]), which exploit the idea of unifying all inhabitants of
a type, are not directly adaptable for systems with inductive types. In such proofs
many new technical complications must be added in order to adapt them to a system
with inductive types (see [14, 15, 13]). Further, it is very likely that it is not possible
to extend such syntactically-oriented proofs to normalization proofs of systems with
mixed inductive types and kinds. Since the dependencies between constructors and
objects are not disregarded in the interpretations presented here, we do not face
the above problems. The present SN-proof is extended in a straightforward way to
systems with other type-constructors. In the present section such an extension is
shown for the system AC + Nat!

The additional rules of AC 4 Nat are listed in Table 2.

The rule (elim, *) is called small elimination and the rule (elim, O) — large
elimination.

There are two additional reduction rules for computing the values of recursive
functions over Nat. This sort of reduction is called ¢-reduction. The contraction
rules for the t-reduction are defined as follows:

Rec(P[x];fo,f,[x,v])(O) - fO)
Rec(P[z]; fo, fs[z,v])(sn) —. fs[z :=n,v:=Rec(P[z]; fo, fs[z,v])(n)).

The proof is extended as follows. First, the notion of v-equality is modified
in order to comprise t-reduction as well. This modification is obvious (see Defini-
tion 4.1). Further, the notion of saturated set should be adapted to Bi-reduction.
This is done below. Let SNg, C 7 be the set of pseudo-terms which are strongly
normalizing under B¢-reduction.
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Table 2. Rules for the type Nat

(form) F Nat:
(introl) F 0: Nat

I'F n: Nat
I'F s(n) : Nat

(intro2)

FFn:Nat I'yz:NatkP:s
‘ Tk fo: Plz:=0]
(elim, 5) [,z:Nat,v:P } f, : P[z := s(z)] s € {+0}

'+ Rec(P(z]; fo, fslz,v])(n) : Plz := n]

Definition 6.1. The set of fi-base terms Bg, is defined as the smallest set
satisfying the following conditions:

(i) Var C Bg,;
(ii) if M € Bg, and N € SNy,, then M N € Bg,;

(iii) if M € Bp, and P, fof,,t € SNp,, then Rec(P[z]; fo, f,[z, v])(M) € Bg..

Definition 6.2. One step [i-key-reduction is defined by the contraction
scheme

AT\ T)Ts S5 Tfv:=Ty),

Rec(P(z]; fo, fulz,v])(0) Sp  fo,

Rec(P[z]; fo, fs|z,v])(sn) —kbp‘ fslz := n,v := Rec(P[z]; fo, fs[z,v)(n)]

and by the compatibility extensions

T\ 5 T2 = TIM 25, ToM,
Ty S5 T, = Rec(P[z]; fo, fulz, I)(T1) S, Rec(P(z]; fo, fi[z, v])(T2).

Fact 6.3. If the proper sub-terms of a term T; are fi-strongly-normalizing,
Ti ip, Ty and Ty € SNp‘, then T, € SNp‘.

The next definition describes the collection SATj, of Bi-saturated sets. Note
that only the subscripts differ from those in Definition 4.14.

Definition 6.4. The set X of pseudo-terms is fi-saturated if:
(1) X CSNg,;

34



() Bz, C X;

(i) if Ty f—*g; T2, T» € X and the proper sub-terms of 7} are fi-strongly-
normalizing, then 7} € X.

It is easy to check that the closureness properties listed in Lemma 4.16 are also
valid for the collection SATyg,.

The interpretations which are needed to be added to those in Definitions 4.18
and 4.17 are specified as follows:

Atom-interpretations:

[Nat]$ := Nat,
Is(n)l; = s(Inlp),

[Rec(P[z]; fo, fslz, v])(n)]; ==
Rec(ﬂplg[z;zx][x]; Ifolg’ "fl‘ g[:::::,v:zu][m’ v])(ﬂnlg)

Constructor-interpretations:

e The constructor-interpretation of the type Nat is defined to be the smallest
[i-saturated set which contains 0 and is closed under s, that is

INatf¢ , := uX € SATp,(0 € X&(z € X = s(z) € X)). (3)

e The constructor-interpretation of terms of the form

Rec(A[z]; fo, fs[z, a])(n),

obtained by applying the rule for large elimination over Nat, is defined below. Its
definition uses recursion over the set ﬂNatﬂé, ,- First some auxiliary functions are
defined. Let in the following

GO = [lfOIé,p' (4)

Let also g(n) and G,(n,a) be (dependent) set-theoretical functions de-
fined by the equations (n € [Nat[; ,, a € I]Alg'p[x:n] and z € FV(A, fo, fs,z,2))

g(n) := [Rec(Alz]; fo, fs[z, a])(2)lpz.=n), (5)
GQ("" G) = ufslé[a::a],p{a::g(n),t::n}' (6)
Finally, let G(n) be a set-theoretical function with domain [INatI%‘ »»-defined by
G(n) = maz(ﬂAag,p[z:n])' (7)
Now we define a function F(n) by recursion on n € |Nat|2,p:
F(0) = Go,
F(s(n)) = Gs(n,F(n)), )
FG) = G() if b€ Bp,, (
F(M) = F(M') if M55 M
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Then we can define
[Rec(P(z]; fo, fs[z, v])(n)l¢ , = F(Inl3). (9)

The Lemmas 4.20-4.22, 4.24, 4.25 and their proof are extended in an obvious
way. The proof of the Soundness Theorem 4.28 is also extended in a trivial way
for the new rules. The case when the last rule in the derivation of a judgment
't M : T is the rule for large elimination over Nat, will be treated here:

I't:Nat I',z:Natk A:0
'k fo:Alz:=0] T,z:Nat,uv:AF f,: Alz := s(z)]

'+ Rec(A[z]; fo, fs(z,a])(t) : Alz =]
We have to prove that if £, p =T, then

[Rec(A[z]; fo, fulz, v])(D)lg , € 1Alz := 1],

and
[Rec(A[z]; fo, fs [:L',a])(t)lg € |A[z :=1] ﬂé'p.
From the induction hypothesis the following inclusions follow:
(i) ¢l € INatf; ;

(ii) Vn € [Nat]; , : ]
ﬂAl?,p[x::n] € U )
1
"Alf,p[z:n] € SATﬂH
BAlg[rzzn] € SNﬁH

(iii)  §fole, € DAL pozopy
ﬂfolg € 'Alé,p[z:=0];
(IV) Vn e uNatﬂé,p: Va € UAlg,p[z:=n]’ Vie ﬂAu,p[z::n] :

"f'lé[arza],p[a:zl,z:n] € "Alg,p[zzzs(n)’
I]fslg[azzl,x:zn] € "Alé.l’[&':s(")]'

Note that Go and the function G(n) are well-defined (see (4), (iii), (7) and
(i1)). We will prove also that the function G,(n,a) is well-defined. First, we shall
prove that g(n) € |Al¢ (.-, (see (5)) by induction on n € INatj; :

1. Let n=0.
9(0) = Rec(aAlg[rzzz] [z]; [lfO g’ nfO g[:::::,a::a])(o)!
and hence g(0) =4, |fo}. Thus, from (iii), (ii) and Definition 6.4 it follows

g(0) € "ALI)[:::O]'
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2. Let n = s(m) for some m € [Nat[; , and let us assume g(m) € [A]} ..

g(s(m)) = Rec(ﬂAlg[::z][z]; ﬂfolg: [If3 2[z:=z,a:=a])(s(ﬂm[|g)'

=m] ‘

Thus g(s(m)) -'fm; ﬂfs'ﬂ[a:g(m)',::m] and hence from (iv), (ii) and Definition 6.4
we obtain

g(s(m)) e HA’tl',p(.t::S(m)]'

3. Let n € Bg,. Then also g(n) € Bg, (see Definition 6.1 and (5)) and hence
g(n) € JAR jz.=n) since AL} ,,._) is @ Bi-saturated set.
4. Finally, let n —k-»p, n’ and let us assume g(n’) € []Alé,p[z:n']' Note that

g(n) —kvp‘ g(n’) (see Definition 6.2) and hence g(n) € ﬂAﬂé,p[z:zn,} since [A]; oz
is a saturated set. Further, from Lemma 4.25 it follows

=n’']

“Aﬂé,p[xzzn’] = “Aﬂé,p[zzzn]’
and hence g(n) € []A[]é'p[x:n].

Thus we have proved that g(n) € ﬂAIé'p[z:n]. This implies that, first, the
function G,(n,a) (see (6)) is well-defined, and second,
[Rec(Alz]; fo, filz, a]) (D], € [A[z == 1][¢, (10)

since [Rec(A[z]; fo, f5[z, a)()]S = g([t10)-
It follows now that the function F(n) (see (8)) is well-defined, because Gy
and the functions G and G, are well-defined. Now we shall prove that F(n) €

UA"?,,,[mn] by induction on n € [Nat; ,:
1. Let n = 0. By definition
F(O) = lfO'é,p'
Thus, from (iii) it follows F(0) € []A|g'p{z:=0].

2. Let n = s(m) for some m € [Nat]; , and let us assume

F(m) € VAl jz:=m)-
By definition (see (8)) F(s(m)) = [ fsl¢(a.2 p(m)] sla:=g(m),c:=m]+ ThuS, from (iv) it
follows F(s(m)) € EAI?,p[z::S(m)]'
3. Let n € Bg,. In this case F(n) = ma:c(IAlg’p[z::ﬂ]) and hence F(n) €
VAL jiz.=n)
4. Let now n —km‘ n’ and let F(n') € ﬂAlﬁ,,[,:

and thus from Lemma 4.25 it follows

F(n) € JA[ jz.=n)-

By definition F(n) = F(n')

:nll]'
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Thus we have proved that F(n) € ﬂAl?,p[z:nl and hence

[Rec(Alz]; fo, fulz, ) (t)l¢ , € 1Az == 1][Z ,. (11)

The proof of the Soundness Theorem in the case of the rule for large elimination
over Nat follows directly from (10) and (11).

The proof of Strong Normalization for AC + Nat follows in a trivial way from
the Soundness Theorem (see Theorem 5.1).

7. DISCUSSION

We have presented a simple semantical proof of Strong Normalization for the
systems of the A-cube. We have shown that the property of Strong Normaliza-
tion can be derived directly from a simple denotational semantics of the system
considered. Further, the flexibility of this semantical proof has been illustrated by
extending the system AC + Nat.

We have not addressed the following questions, which deserve some attention:

e Generalized Inductive Definttions. The proof presented here is extendible in a
straightforward way to a proof of Strong Normalization of systems with generalized
inductive definitions. Such definitions are a convenient tool for defining various
inductive types, such as lists of a type o, sigma types, finite sets, etc. A proof
of Strong Normalization of AC enriched with generalized inductive definitions is
presented in [12].

e Inductive kinds. In some systems there is a clear distinction between the level
of formulas () and the level of domains (O). In such systems one prefers to define
data-types rather as kinds than as types. An interesting issue, which seems to have
not been considered yet in the literature, is the metatheory of a system in which
inductive definitions are allowed at the both levels * and O. In such systems one
can define inductive predicates (for example =4: A—A—x) at the level of formulas
and inductive data types (for example Nat : D) at the level of domains. The proof
described here is adapted to systems with inductive kinds in [12].

e Generic strong normalization argument. The proof presented above suggests
a generic method for proving Strong Normalization for PTSs. The genericity lies in
the fact that the properties of interpretations U* and U of the universes * and O
are derived directly from the PTS-presentation of the systems in the A-cube. For
example, the axiom * : O is interpreted by U* € U®, and the PTS-rules — by
requiring adequate closure properties on U* and U".

We outline how one can generalize the method to a subclass PTSs.

A PTS § = (S, A, R) is specified by three sets: S of sorts, A of axioms, and
R of rules (see (2] or [4] for a detailed presentation of PTS-s). The set S of sorts
is simply a set of fixed constants s;. Every axiom has the form s; : sj, and every
rule — (s;,55,5¢). The PTS-rules say what kind of dependent products can be
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constructed inside the system S. For example, if (s;, s;, 5¢) € R, then the following
([T)-rule is allowed in the system S:

AFsi: viAFB:s;
MMv:A.B F s : .

A relation < is defined on the sets of sorts to be the smallest relation satisfying
the following conditions:

(1) si:s8;5 = 8; < sy,
(i1) 8; < s; and s; < s ==> §; < 8k.

Below we sketch out the properties each interpretation U’ of a sort s should
pOssess:

— for any axiom (s; : 5;) € A it holds that U* € U?%J;

— for any rule (s;, sj,st) € R, such that s; < si, one can define an operation
I13: for which holds

VX e U V{Y:}zex € UY TIJiz € XY: € U,

— for any rule (s;i,s;,sx) € R, such that s; > s, it follows that U** is closed
under arbitrary non-empty intersections;

— for each sort s, @ ¢ U®*.

It is interesting to see for which PTSs the universes U, exist.. For example, it
is clear that for PTSs, for which the relation < is not a strict order, i.e. s < s for
some sort s, such universes can not be found. Further, one needs to study more
precisely the dependencies in the PTS considered, in order to specify as precise as
possible the operations H;;

e Models. The Strong Normalization proof presented here is based on specific
models of the systems of the A-cube. In [12] an abstract notion of a model of AC
will be presented. This abstract model construction generalizes the ideas presented

here.
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