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Ladies and gentlemen,

I would like first to thank the organizers of the Logical Biennial for the invi-
tation to briefly share some reflections on the scientific deed of Professor Skordev.
I feel greatly honoured by this invitation, indeed. At a jubilee like this it might
be a permissible departure from the norm for a student to estimate his teacher’s
work rather than the opposite. I am not going to discuss so much specific results
but rather concentrate on some methodological aspects of Skordev’s contribution
to Recursion Theory.

A cursory review of Skordev’s past scientific activities reveals that a fairly
major portion of his research and publications was devoted to Recursion Theory.
Following his early papers [18, 19] on computable and mu-recursive operators and
recursively complete arithmetical operations, and the subsequent ones {20, 21] on
universal functions, Professor Skordev had over 30 publications on Recursion The-
ory during the period subsequent to 1974. Most of those publications were actually
on Algebraic Recursion Theory, including the monographs [23, 24]. Likewise, it was
for his research in Algebraic Recursion Theory that Professor Skordev got his Doc-
tor of Sciences Degree and was awarded the Nikola Qbreshkov Prize, this countr
most prestigious award for achievements in the area of mathematics.




Professor Skordev set about his undertaking to generalize and axiomatize Clas-
sical Recursion Theory in the early seventies. That happened in the context of par-
ticularly interesting developments connected with a number of attempts to expand
the scope of Recursion Theory. Probably, the first substantial advancement in that
direction were the papers of Kleene [9, 10], affording a presentation of the hyper-
arithmetic theory via recursion in a second order object embodying quantification
over natural numbers. Kleene’s generalization was specifically important for not
only initiating a new area in Recursion Theory known as Higher Recursion Theo-
ry, which was considerably advanced in the sequel, but also for setting a pattern
and paving the way for other generalizations, especially those of Platek [16] and
Moschovakis [12]. Research on computability over algebraic structures occurred as
early as in the sixties, but the appropriate concepts of such computability were
devised by Moschovakis [12] and by Friedman [5], the finite algorithmic procedures
of the latter accounting for the lightface version. Incidentally, the concepts of prime
computability and search computability of Moschovakis had a significant influence
on the genesis of Skordev’s generalization itself.

It is of interest to clarify the motives behind the various endeavours to general-
ize Recursion Theory beyond the classical study of effectively computable number-
theoretic functions. For instance, recursion on infinite ordinals originated in Takeu-
ti’s papers (25, 26] with the necessity of introducing and studying such recursion,
arising most naturally out of several areas of Mathematical Logic: Proof Theory,
Model Theory and Set Theory. Such recursion was needed in order to deal with
concrete problems such as ‘effectivity’ of proofs and ‘arithmetical’ undefinability
in a generalized sense, as well as to achieve a more precise understanding of set
structure, based on which to find solution to some problems already formulated in
Set Theory.

Apart of particular problems originating in other areas, the study of effective
computability in a more general context was put on the agenda also by certain
general principles ensuing from Recursion Theory itself. These comprised the com-
mon aims of a mathematical generalization: to design abstract structures that are
not only new and support a rich in content theory, but which also clarify Classical
Recursion Theory and would possibly prove useful in application. More than that,
it was hoped that if successful, such developments would eventually provide an
axiomatical foundation of Recursion Theory.

The effort of some of the most brilliant logicians of the sixties and the seventies
led to successful generalizations of Classical Recursion Theory in several directions,
in the sense that suitable notions of effective computability were identified, provid-
ing the means for desired applications in the areas for which the relevant general-
izations had been intended. The resulting Generalized Recursion Theory, mitially
regarded as technically forbidding but for a small community of devoted experts,
later got much better and streamlined presentations. The progress in axiomatizing
Recursion Theory, however, was less than satisfactory, at least until the invention
of Skordev combinatory spaces.
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Skordev’s ideas of generalizing and axiomatizing Recursion Theory evolved
around 1974 by way of extracting certain algorithmic properties of multiple-valued
functions which turned out to permit axiomatical treatment. Professor Skordev
successfully materialized his ideas by a combination of mathematical intuition and
a refined technique based on an excellent command of the apparatus of Classical
Recursion Theory and related domains of Logic. In the process, however, he not
only achieved the aims he had set, but went far beyond his original goals, taking
advantage of the rich opportunities offerred by the very approach invented by him.
Actually, within few years Skordev laid the foundations and outlined the scope of
a general theory notable for its deepness and elegance combined with an unusually
wide scope of application. If the place of Skordev’s theory in mathematics is to be
described in few words, one might say that from a philosophical viewpoint Skordev’s
theory captured the nature of effective computability very much in the same way
as Group Theory related to the concept of symmetry.

The hard core of Skordev’s axiomatic approach was based on the algebra-
ic structure of combinatory space. The principal characteristics of those spaces
comprised: first, dealing with more general mathematical objects, members of a
partially ordered semigroup rather than just functions or functionals; and second,
choosing few basic or initial operations and setting forth their fundamental proper-
ties by means of a small number of elegant algebraically-styled axioms including a
mu-induction principle. The basic operations of a combinatory space correspond-
ed both intuitively and in a direct way to certain constructions to be found in
structural programming or to certain patterns of combining computational devices,
namely composition, branching or if-then-else statement, loop or while-do state-
ment. Their axioms were first order axioms and also a first order mu-induction
axiom sufficed for the bulk of the theory.

It is instructive to notice that in essence the basic operations of combinatory
spaces occurred independently in other works, mainly in Computer Science, e.g. in
the functional programming structures of Backus [1] and the schemes of Bohm and
Jacopini (2], where, however, their mathematical potential had not been profitably
exploited due to a number of reasons. The method of mu-induction, too, could
be found in Computer Science; indeed the mu-induction axiom of combinatory
space was a particular instance of Scott’s mu-induction rule. A comparison shows
that, due to the right choice of basic operations and initial elements, mu-induction
in combinatory spaces was a powerful technical device, while the general Scott’s
rule was not, precisely because the system of Scott [17] lacked such suitable basic
elements and operations.

Owing to the combination of aptly chosen basic operations and the mu-induc-
tion technique, a fairly non-trivial results were obtained in the general theory of
combinatory spaces. Typical of that theory are assertions such as the Normal
Form Theorem, the Enumeration Theorem and the First and Second Recursion
Theorems, abstract Rice and Rogers Theorems. Needless to say, representation
of the ordinary partial recursive functions was available too, hence the Classical
Recursion Theory was not just a particular instance (i.e. model of the general
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theory) but at the same time was always imbedded as a minimum component. This
was very much the case of Kleene-recursiveness in finite type objects, which was
both a particular instance of relative recursiveness within a suitable combinatory
space, and was also represented (and thus imbedded) in hierarchies of spaces and
in a certain kind of more sophisticated spaces studied in Ivanov (6, 8].

On the other hand, the appropriate choice — or one might say design —
of the basic operations and their axiomatically captured properties resulted in a
surprising variety of models or particular spaces with essentially different semantics
of various order. Apart of the standard case of single-valued and multiple-valued
functions forming first order spaces, and monotonous functionals and second order
relations forming second order spaces, these included also spaces of first and higher
order related to certain concepts of everywhere-definedness and complexity of data
processing, or comprising functions with finite types arguments, ordinal functions,
probabilistic functions, fuzzy relations and the like. This abundance of spaces made
it possible, first, to generalize via Skordev’s approach already existing notions of
effective computability, thereby paving the way for ample applications of the general
theory. And second, it allowed to introduce notions of effective computability in
areas which had not supported such notions before.

The approach initiated by Skordev provided a good illustration to another
aspect of generalization by contributing to better understanding of Classical Re-
cursion Theory and Generalized Recursion Theory. Certain phenomena which in
Classical Recursion Theory were muted by ‘too much arithmetic’, i.e. by the avail-
ability of uninherently strong tools, had been known to emerge even in Generalized
Recursion Theory. Such was, for instance, the distinction between lightface and
boldface versions of the theory; also the understanding that Classical Recursion
Theory traditionally employed operations which fitted better in arithmetic, but be-
long less naturally in Recursion Theory. Indeed, unsuccessful attempts to make use
of minimization (or least number) operator in Generalized Recursion Theory had
shown that operation to be inadequate for the purposes of prime or search com-
putability or, as a matter of fact, recursion in higher types or recursion on ordinals.
In contrast, the iteration operation of Skordev that superseded the least number
operator was always suitable, because it was defined by its properties needed for
the theory.

Of course, this universality of the axioms of combinatory space had most inter-
esting semantical implications for its operations, resulting in semantic multiplicity
even within a single higher order space. That applies particularly to multiplication
and, as a consequence, to iteration operation. The semigroup multiplication would
usually be a sort of composition, executed however in an opposite order, respective-
ly in first and higher order spaces. The first order semantics of iteration was more
or less of a loop nature, while in higher order spaces iteration at the higher level
was nothing else but the least fixed point operator over the preceding level. Thus
in the context of Algebraic Recursion Theory one could ascertain a sort of identity
between seemingly completely different operations: the least fixed point operator
was a particular instance of iteration which in turn was a particular instance of the
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least fixed point operator. Another similar phenomenon in the axiomatic theory
was explicated by Skordev’s pairing operation, which drew the lightface-boldface
division line in the theory. Its first order semantics dealt with coding of pairs of
data other than natural numbers, while its higher order semantics, as shown in
Ivanov (8], took care of lambda abstraction.

An important aspect of any mathematical theory are not just its statements
but their proofs as well. Here we see one of the unmistakable symptoms of a non-
trivial generalization in the fact that quite a few of the proofs in Skordev’s general
theory were new rather than just modified proofs extracted from particular in-
stances. More often than not those proofs tended to be streamlined and elegant on
account of avoiding the temptation to solve problems ‘by force’ due to availability
of excessive tools. At the same time, Skordev’s axiomatic theory established com-
mon proofs and direct links between theorems belonging to different theories which
otherwise seemed to be analogous, but actually proved to be particular instances
of one and the same abstract proposition of Algebraic Recursion Theory; the situ-
ation earlier discussed for operations applies here to statements. For example, the
First Recursion Theorem of Skordev generalized both the Kleene First Recursion
Theorem and the Moschovakis Induction Completeness Theorem.

One of the popular and quite natural approaches to generalizing Recursion
Theory was by way of employing inductive definability as a foundation, an idea
stemming from Moschovakis [14] and supported by Feferman [3], too. The interest-
ing try of Moschovakis [15] was further aimed at elevating the theory of inductive
definability to a more abstract axiomatic level comparable with that of Skordev’s
setting for Recursion Theory. From the point of view of Recursion Theory however,
Skordev’s approach had the advantage of being not transplanted but intrinsic to
that theory. Moreover, his approach made it possible for the inductive definability
itself to be dealt with as a particular instance of relative recursiveness in a suit-
able combinatory space, i.e. within Recursion Theory, thus showing that Recursion
Theory was just as fundamental as Inductive Definability Theory.

Returning to the strive for building axiomatic foundations of Recursion Theory,
the attempts prior to Skordev’s one might be regarded as partially successful, as
far as their results and acceptance by the logician community were concerned. It
was true that considerable effort had been allotted to the detailed elaboration of
certain axiomatic approaches to Recursion Theory; typical example of that were the
so-called computation theories of Moschovakis {13] studied extensively by Fenstad
[4]. It turned out eventually that it was possible to embrace a number of notions of
Generalized Recursion Theory in the framework of the computation theories and
to reaffirm once again the relevant results from particular theories, leaving however
the feeling of a persisting necessity to readapt the general setting, i.e. lack of true
uniform general approach. Combined with the domination of modified proofs, that
hinted at a certain creative potential deficiency.

Needless to say, there are still many open problems in Algebraic Recursion
Theory. One of the major challenges at this stage appears to be the necessity to
identify a reasonable concept of ‘finite’ in Algebraic Recursion Theory, needed, e.g.,
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to deepen the study of abstract degrees initiated by Ivanov [7]. The importance of
such a step in any generalization of Recursion Theory was stressed by Kreisel [11].

With its undoubted quality of good mathematics the approach of Skordev
inspired natural interest among a number of other logicians as well as computer
scientists. That resulted in dozens of publications, M.Sc. and Ph.D. theses by N.
Georgieva, J. Zashev, O. Ignatov, L. Ivanov, R. Lukanova, S. Nikolova, E. Pazova,
V. Petrov, A. Radenski, I. Soskov, M. Tabakov and others. Most interesting are
the works of Zashev [27-29] in a related new area, Recursion Theory on partially
ordered combinatory algebras and further generalizations at categorial level. Dur-
ing the last two decades Professor Skordev worked out a new portion of Recursion
Theory which, with the contribution of his followers, evolved to form an original
school in the Theory of Effective Computability. Apart of that, ideas and methods
originating in Skordev’s approach were applied to other areas of Recursion Theory
and to Non-Classical Logic by A. Dichev, I. Soskov, A. Soskova, D. Vakarelov, G.
Gargov, S. Passy, T. Tinchev and V. Goranko. As a matter of fact, a good deal of
Bulgarian logicians have had a more than passing interest in this subject matter.

In conclusion, as a witness of these developments during the last twenty years
or so, in which I was honoured to participate, I would like to take this opportunity
to most cordially congratulate Professor Skordev as my teacher, on the occasion of
his anniversary, and wish him best health and further twenty years of tireless and
fruitful work.
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