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In this note the variances of theé basic random fields — temperature and heat flux —
in a dilute dispersion of spheres with a small volume fraction ¢ < 1, subjected to a
constant macroscopic temperature gradient are studied. The basic result is an estimate
on the ¢?-term of these variances, which includes the well-known c2-term of the effective
conductivity, extensively studied in the literature.
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1. INTRODUCTION

The aim of this note is to report some preliminary results concerning field
fluctuation in a dispersion of nonoverlapping spheres. The heat conduction context
is chosen, above all, for the sake of simplicity. A similar study of any transport
phenomenon through the medium in the linear case can be performed along the
same line.

Let us recall first how the problem is stated. Assume we have an unbounded
matrix material of conductivity &, throughout which filler particles of conductiv-
ity ks are distributed in a statistically isotropic and homogeneous manner. The
random conductivity field k(x) of the medium takes then the values kmy, or &y, de-
pending on whether x lies in the matrix or in a particle, respectively. If G denotes
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the prescribed macroscopic temperature gradient imposed upon the medium, the
governing equations of the problem, at the absence of body sources, read

V-q(x) =0, q(x)=x(x)Vl(x), (1.1a)

under the condition
(Vo(x)) = G (1.1b)

which plays the role of a “boundary” one. In equations (1.1a) q(x) is the flux
vector and #(x) is the random temperature field. Hereafter {-) denotes ensemble
averaging. )

The random problem (1.1) possesses a solution, in a statistical sense, which
is unique under the natural condition 0 < k; < &(x) < k2 < o0, see [11]. This
means, let us recall {1}, that all multipoint moments of the temperature field 8(x),
and the joint moments of f(x) and x(x), can be specified by means of the known
moments of the conductivity field. In particular, among the joint moments, the
simplest one-point moment defines the well-known effective conductivity x* of the
medium through the relation

Q = (a(x)) = (x(x)VO(x)) = "G (1.2)

(having assumed statistical homogeneity and isotropy). Note that the definition
(1.2) of the effective conductivity k* reflects the “homogenization” of the problem
under study, in the sense that from a macroscopic point of view, when only the
macroscopic values of the flux and temperature gradient are of interest, the medium
behaves as if it were homogeneous with a certain macroscopic conductivity «*. This
interpretation explains why «* and its counterparts, say, the effective elastic moduli,
have been extensively studied in the literature on homogenization. There one ‘can
find a number of rigorous or approximate schemes of their evaluation, especially, in
the context of mechanics of heterogeneous and composite media, see, e.g. [9, 21, 14]
et al. However, k™ 1s only a tiny part of the full statistical solution of the random
problem (1.1). Moreover, its evaluation cannot be torn away from the full statistical
solution of (1.1), i.e. of specifying all needed multipoint moments, as pointed out for
the first time by Brown [8]. (The latter fact explains the failure of all schemes that
try to determine solely the effective property x* without trying to solve the whole
stochastic problem (1.1).) Besides, there are plenty of reasons why one should pay
much more attention to other statistical characteristics of random fields like 8(x)
in (1.1), that appear in problems in random heterogeneous media. For instance, in
the context of waves in random media or turbulence phenomena, one of the most
important 'quantities is the variance of local fields, connected with the square of its
fluctuation, see [1].

The (undimensional) variances, which we shall discuss hereafter, are defined

. _ (VeI 5, (dx)P)
Ve =" 0 99T T
G2 g Q?
the primes denote in what follows the fluctuating parts of the respective random
fields, so that, in particular, V#'(x) = V#(x) — G, and hence (V6 (x)) = 0.

as

(1.3)
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It is noted that for any two-point medium the variances 0%, and 03 are simply
interconnected. Indeed, since the conductivity field x(x) takes only two values,
and k.., we have

K%(x) = (kg + Km)K(X) = K1 Km
and hence
(qz(x)> = (nz(x)|V9(x)|2) = (ks + fcm)n’G’z — KfKkm <|V0(x)|2) ,
having used (1.2). A simple algebra yields eventually

2 __ _Kifm o (K* = Kf)(K* = Km)

Og = —" vz V8~ o2 (1.4)

Let us point out immediately that the study of variances in particular, and
of the multipoint moments in general, is much more complicated than that of the
effective properties due to the fact that, as a matter of fact, no variational principles
for the former have been proposed and applied in the literature. (Though, see the
book [5, p. 143], where an extremely concise exposition and some ideas along this
line are indicated.)

To the best of the authors’ knowledge an investigation of the variances, in
addition to the effective properties in the scalar conductivity context, was initiated
by Beran et al. [2, 4, 3]. In particular, Beran [2] obtained bounds on the variances
through the effective properties, investigated in great detail in the literature. The
Beran’s estimates are quite crude and this is inevitable since they are applicable to
any statistically homogeneous and isotropic medium.

More restrictive bounds can be obtained only if additional information about
the medium constitution is available and the needed random fields are specified at
least to a certain extent. This is the case with random dispersion of spheres which
we shall study in more detail later on.

The above mentioned results of Beran indicated that there may exist more
intimate connection between variances and effective properties. Indeed, as shown
independently by several authors [6, 7, 15], the variance is simply connected to the
derivatives of the effective conductivity £* = &*(ky, km ), treated as a function of the
material properties Ky, K of the two constituents in a binary medium. This is an
interesting and important result, but its practical application is limited by the fact
that very rarely rigorous analytical formulae for £*(ky, k,n) are known for realistic
random constitution. Rigorous bounds on k*(xy, k) are well-known, of course,
but they obviously cannot supply any estimates for the appropriate derivatives.

In the present note we shall employ another method for studying variation
in random dispersions. Namely, we shall use the fact that for the latter the full
statistical solution of the problem (1.1) can be conveniently constructed by means
of the functional series approach, see [10, 16, 17]. Moreover, the first two kernels
of the series can be explicitly found, which results, in particular, in a formula for
the needed variances, which is ezact to the order ¢2, where c is the volume fraction
of the spheres. Then the observation that some of the terms in the appropriate
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formulae are sign-definite produces a bound on the variances which, as it turns out,
can be simply expressed by means of the ¢?-coefficient of the effective conductivity.
The latter, as it is well-known, represents a quantity extensively studied in the
literature.

2. C?*-SOLUTION OF THE BASIC PROBLEM (1.1) FOR DISPERSIONS OF
SPHERES

To get certain rigorous results for the variance, one should somewhat narrow
the class of two-phase random media. To this end, consider in more detail here
a random dispersion of spheres as a typical representative of the wide and im-
portant class of particulate microinhomogeneous media, extensively studied in the
literature.

Let us recall first the so-called virial (or density) expansion of x* in powers of
the volume fraction ¢ of the spheres:

*

=14ajc+axc®+--- (2.1)
Km

Note that hereafter we shall try to cover simultaneously both 3-D case (dispersion
of spheres) and its 2-D counterpart — a matrix containing an array of circular
and aligned fibers subjected to a macroscopic gradient perpendicular to fiber axes.
Depending on dimension, a will denote either the sphere radius (3-D) or the radius
of the cylinder cross-section (2-D). For the volume fraction ¢ of the spheres we have
¢ =nV,, Vo = 37a® in the 3-D case, or ¢ = nSqy, S; = ma? in 2-D, n is the number
density of the spheres or of the fibers.

As it is well-known, the coefficient a; in (2.1) is the only thing rigorously
calculated by Maxwell {20] in his classical theory of macroscopic conductivity of a
random dispersion. The Maxwell result reads

(%] |
=d = =Kf—~ Km,; .
a ﬁd; ﬁd Ky + (d - l)fim ) [K] Kf K (2 2)
hereafter d =3 in the 3-D case and d = 2 in the 2-D-case. ,
For higher sphere fraction, the Maxwell theory [20] yields the well-known ap-
proximate relation

K* dBgc
=1

/ Km + 1 - ﬂdc |
— /the so-called Maxwell (or Clausius-Mossotti) formula [14]. The latter produces

in'turn the following approximation for the c¢2-coefficient, namely:

(2.3)

ay=dp2, d=2,3. | (2.4)

The rigorous evaluation of a; has attracted the attention of many authors,
because this is the simplest case in which the multiparticle interaction shows up in
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a nontrivial way. We refer here to the papers [22, 13, 12, 16] et al., where a, has
been expressed in a closed form, making use of the zero-density limit go(r) of the so-
called radial distribution function for the spheres, and of the one- and two-inclusion
fields for the conductivity problem under study. (Recall that the radial distribution
function g(r) = fo(r)/n?, where r = |y; — y2), so that g(r) = go(r) + o(n) in the
~ dilute limit n — 0; fa(r) = f2(y1—y2) denotes the two-point probability density for
the set of sphere centers.) In the 2-D case (fiber-reinforced material), the coefficient
a; has been evaluated analytically by the authors [19], making use of the earlier
reasoning of Peterson and Hermans [22].

As already mentioned, the full statistical solution of the problem (1.1) for a
random dispersion can be conveniently constructed by means of the functional series
appraach, see [10, 16, 17] for details. In particular, as shown by one of the authors
[16], the temperature gradient fluctuation in the dispersion of spheres, correct to
‘the order ¢?, has the form of the truncated functional series:

V' (x) ::/V,,Tl(x - y)D,(l,l.)(y) dy

(2.5)
+//V:T2(x =YuX-— Y2)D'(1;2)(Y1»Y2) dy:dyz,
where | M) iy o
Dy’ = ¢'(x) = ¢¥(x) —n, | (2.6)
D (v1,y2) = $(y1)¥(y2) ~6(v1 — y2)] @

—ngo(y1 — ¥2)[¥'(y1) + ¥'y2)] - n 290(y1 - ¥2),

and the kernel T3(y;,y2) is a symmetric function of its arguments y; and y,.
Recall that n is the number density of the spheres, so that their volume fraction is

¢ =n3ma®in 3-D and ¢ = nma? in 2-D. The integrals hereafter are over the entire

space R? if the integration domain is not explicitly indicated. In (2.5) to (2.7)
Y(x) = Z&(x — Xg)

is the random density field of Stratonovich [23], generated by the random set {xa} ,
of sphere centers. The fields D(l) D(z) and the constant field D(D) = 1 constitute
a c?-orthogonal family, i.e.

<D(1)> <D(2)> <D(1)D(2)> 0(62) (2.8)

which means that in the c2-analysis performed below the averaged valum in (2. 8)
can be neglected. We have also

<D$)(Y1)D,(,,I)(Y2)> = néyp — anO(YI' -y2), Ro(y)=1 - 90(y), 29)

<D‘(ﬁ'2)(yl ’ yz)Dq(bz)(yih y4)> = n290(y1 - )'2)(613524 <+ 614523),
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where é;; = 6(y: — y;j), and go is the above mentioned low-density limit of the
radial distribution function for the set of sphere centers, which is the only statis-
tical characteristics of the dispersion needed in the c2-statistical solution for the
temperature gradient. The relations (2.9), as well as all formulae in the sequel, are

correct to the order ¢ only.
The kernel T} that enters (2.5) has the form

73 (X) = Tm(x) -+ nTu(X). (210)

In (2.10) Tyo(x) is the “one-sphere” solution, i.e. the disturbance field super-
imposed by a single spherical inclusion of radius a (located at the origin) on a
temperature field in the matrix with constant gradient G at infinity. Recall that
Tio(x) solves the equation

kmAT10(x) + [£]V - {h(x)[G + VTio]} =0 (2.11a)

and hence
Tlo(x) = dﬂdG ) VQO(X), (211b)

where p(x) is the Newtonian potential for a sphere (in 3-D) or for a circle (in 2-D)
of radius a; h(x) denotes the characteristic function of a single sphere (or disk in
2-D) centered at the origin, and 83 was defined in (2.2). As it is well known, the
potential ¢(x) solves the equation |

Ap(x) + h(x) =0, : (2.12)
which implies, in particular, that
h(x)VTio(x) = —dBah(x)G, ATio(x) = —dBaV - (h(x)G). (2.13)

To specify T11(x), we should first note that to the order ¢? the kernel T3 in
(2.5) equals Ta. The latter solves the equation

2% ATso(x,x — 2) + [£] V - {2[A(x) + h(x — 2)] VT20(x, x — 2)
4+ h(x)VTio(x — z) + h(x — z)VTio(x)} = 0. (2.14)

The differentiation hereafter is with respect to x, and z plays the role of a'parameter.
Hence

2To(x — 2;x) = T (x;2) — Tho(x) — Tro(x — 2) (2.15)

with T(?)(x;z) denoting the “two-sphere” solution, i.e. the disturbance to the tem-
perature field in an unbounded matrix, introduced by a pair of identical spherical
inhomogeneities with centers at the origin and at the point z, |z| > 2a, when the
temperature gradient at infinity equals G. Thus

km AT (x;2) + [£] V - {[h(x) + h(x —2)] [G+ VT3 (x; z)]} =0, (2.16)
which is the counterpart of the “single-sphere” equation (2.11a).
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The coefficient T11(x) can be represented as

Tu(x) = ﬁdVaTlo(x) + 2L20(x), L20(x) = go(z)Tzo(x — 2, X) dz. (217)
|1Z{>2a

To calculatg t}xe effective conductivity k* through the kernels 71 and T3, note
that the conductivity field #(x) of the dispersion has a form, similar to (2.5), namely,

ﬁ:(x) = (K,) + K'(x), K,'(x) — [m]/h(x — y)Df;)(y) dy. (2.18)

That is why, inserting (2.5) and (2.17) into (1.2) and using the orthogonality of the
fields Dfpl) and fo), see (2.8), give

K*G = (K(x)V8(x)) = (k) G + (£'(x)VO'(x))
| (2.19)
= (k) G + n[x] / h(x)V.S(x) dx

with the function
S(x) = Ty(x) ~ n / Ti(x — y)Ro(y) dy = So(x) +nSi(x),  (2.20)

so that, due to (2.10),
So(x) = Two(x),  Si(x) = Tys(x) — / Tio(x — y)Ro(y) dy. (2.21)

Inserting (2.10) and (2.21) into (2.9) and comparing the result with (2.16) give
for the virial coefficients a@; and as: '

a=(1-p) S~ ap, (2.22)
which indeed coincides with the exact value, given in (2.17), and
ay = df% +a}, a)G =2 o—[cﬂf/% /h(x)VLgo(x) dx. (2.23)

Note that the integrals in (2.17) and (2.23) are conditionally convergent, the
mode of integration being extracted in the course of the statistical solution of the
problem (1.1), see [16, 18] for details and discussion. Namely, one should integrate
first with respect to the angular coordinates at fixed » = R and only then with
respect to the radial coordinate R. This mode of integration will be tacitly used
hereafter to avoid convergent difficulties for some of the integrals in Section 4.

Let us point out finally that though the formula for @/ in (2.23) is written
for a 3-D dispersion, it holds as well in the 2-D case, with the only change that
the volume V, of the inclusions is replaced by their area S, and the integrals are
two-tuple. The same will hold true in all formulae in the sequel. Moreover, a
closed form analytic formula for a3 in the 2-D case was derived, let us recall, by

the authors in [19].
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3. C>-FORMULA FOR THE VARIANCES 0%, AND ¢,

Insert the representation (2.5) into the definition (1.3) of the variance. Due to
the orthogonality of the fields D'(I,l) and Df;), see (2.8), we get

1 .
0%s = reil (A1 + Az), (3.1)
where

Ay = //V:T1(x ~y,) V:Ti(x—y,) <D$)(Y1)D.(p1)(}'2)> dydys, (3.2)

A :////vxT2(x—y1'yx*Y2) Velo(Xx —y3,X—y4)
(3.3)
X <Dz(b2)(YI’Y2)DEp2)(Y3,Y4)> dy, dy; dys dy;,.

Note that
_ (2) 2
Az = I VeTo(x =y, X~ ¥2)Dy (y1,y2) dy1 dy l ,
which implies immediately that Az > 0, and hence
0y > =5 Al (3.4)

An evaluation of the term A; yields thus the lower estimate (3.4) of the variance.
Note that the evaluation of A; is much easier than that of A;. The reason, as
we shall see below (Section 4), is that to evaluate A; only the single sphere solution
Tyo is needed together with the values, assumed known, of the c*-term a3 in (2.16).
At the same time.A, involves already the double-sphere field 7(?) in a nontrivial
way, which essentially complicates the investigation. Note also that the term Aj;
has the order O(c?) (see (2.9)), so that the lower estimate (3.4) gives correct to the
order O(c) results in the dilute case ¢ < 1. Hence from (3.4) the exact value of the
c-coefficient A;, see (3.12), and a lower bound on the c2-coefficient A5 in the virial
expansion, see (4.5) below, of the variance 0%, will follow in particular.

4. EVALUATION OF THE TERM A,
Using (2.9) into (3.2), we get
Ay = n/VTl(x) - VS(x)dx (4.1)

with the function S(x) defined in (2.20), and hence due to (2.10) and (2.21)
A] = n(Au + n.Am), (4.2)
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An =/VT10(X) . VT]Q(X) dx, (43)

A =2 / VTi0(x) - VTh (x) dx — / VTi0(x) - / V. Tio(x — y)Ro(y) dydx. (4.4)

Let
0%e = Arc+ Axc® + -, 02 = Bic+ Bycd+ - (4.5)

be the virial expansions of the variances, similar to the classical expansion (2.1) for
the effective conductivity. The leading terms A; and B; can be easily found, since
this requires an evaluation of the integral A;; from (4.3). To this end integrate by
parts in (4.3), use (2.13), and once again integrate by parts

.A]_l = —/TIQ(X) . AT]Q(X) dx = dﬁdG /h(x)VTm(x) dx,

so that using (2.13) once more gives
A = dBiViGE.

Together with (4.2) this gives the leading terms of the virial expansions (4.6) of the
variances, namely,

Ay = faay = dB2, By =d(d—1)82 = (d—1)A,. (4.6)

Turning to the evaluation of A;3, we start with the first integral in (4.4).
Integrating by parts and using (2.13) together with the formula (2.15) for T, we
have

/VTlo(x) : VTH(X) dx =/AT;0(X)T11(X) dx = -dﬂd/V . (h(x)G)T“(x) dx

= —dﬁdG '/-h(x)VTn(x) dx = —dﬂdG /h(x) [ﬂdVaVTlo(X) + QVL20(X)] dx

= dA3V2G? - 2dB,G - / h(x)V Lao(x) dx.

The second term in the last formula is connected with the c¢2-value ay of the
effective conductivity, see (2.23), so that

dKkm
lcf+(d—1

/VTw(X) : VTH(X) dx = (ﬁg - )K.m ((12 - dﬂg)) dV:Gz. (47)

The second integral in (4.4) is similarly simplified through integration by parts,
and applying (2.13):

/ VTi0(x)- / V. Tho(x—y)Ro(y) dydx = —dB.G- / / VTio(x)h(x = y)Ro(y) dydx
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= -d’giG - / ] h(x — y)Ro(y)VVp(x) dydx - G, (4.8)

having used the representation (2.11b) of the single sphere solution 7T34(x) through
the Newtonian potential of t‘he sphere. But, due to the isotropy of the latter, the
integral in the right-hand side of (4.8) represents a second rank isotropic tensor, so
that

[ [1x =) Ro(3) 793 dyax = 11 (4.9)

and, upon contraction,

vd = [ [hx = y)Ro(y)ap(x) dydx = = [ [ hx = y)hx)Roy) dyax,

see (2.12). The product h(x — y)h(x) does not vanish however only in the sphere
ly| < 2a, where Ro(y) = 1 — go(y) = 1, due to the nonoverlapping assumption
(90(y) = 0if |y| < 2a, since the spheres are forbidden to mtersect) Thus yd = =V
and from (4.8) and (4.9) it follows that

/ VTio(x) - / V.Tio(x — y)Ro(y) dydx = —dB3V2G>. (4.10)

Combining (4.7) and (4.10) into (4.4) and using (3.1) and (2.5) give eventually
Az = (dB3 - 2(1 - Ba)as) VG

From (3.4), (4.4) and the last formula, as it was already discussed, immediately
follows the lower bound

A12 < Az, Az =dB3 —2(1 - Ba)ay, (4.11)

for the c2-coefficient of the variance 02,. Using (1.4) gives in turn the following

upper bound for the respective coefficient of the flux variance ag, namely,

By < Biz, Bia=dfB3[d(1-2a+2afs)~al+ [2(1-fa)a+a—1]as. (4.12)

5. CONCLUDING REMARKS

The estimates (4.11) and (4.12) for the ¢?-coefficients in the virial expansions
(4.5) of the variances represent the central result of the present note. They have
been obtained without using variational arguments — instead the full statistical
solution of the problem (1.1) has been appropriately exploited. The estimates
account for the statistics of the dispersion through the well-known and extensively
studied in the literature c2-coefficient as of the effective conductivity. Moreover,
they remain finite for high-contrast media, when the ratio @ = &y/km goes to 0
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or co. A more detailed investigation of the estimates (4.11), (4.12) and of their
implications will be performed elsewhere.
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