FTOAVIIHUK HA CO®UNCKUA YHUBEPCUTET »CB. KIMMEHT OXPUICKU*“
PAKYJITET O MATEMATUKA U UHPOPMATUKA

Knura 2 — llpunoxkna maTeMaTuka u undpopmaTuka
Tom 91, 1997

ANNUAIRE DE L'UNIVERSITE DE SOFIA | ST. KLIMENT OHRIDSKI*

FACULTE DE MATHEMATIQUES ET INFORMATIQUE
Livre 2 — Mathématiques Appliquée et Informatique
Tome 91, 1997

KNOWLEDGE REPRESENTATION AND PROBLEM SOLVING
IN THE INTELLIGENT COMPUTER ALGEBRA SYSTEM
STRAMS

MARIA M. NISHEVA-PAVLOVA

The paper discusses the intelligent computer algebra system STRAMS being under
development at the Faculty of Mathematics and Informatics, Sofia University. The
functional facilities and the architecture of STRAMS are briefly described. The pre-
sentation focuses on issues related to the suggested knowledge representation formalism,
the structure and the contents of the knowledge base of STRAMS and the implemented
mathematical problem solving and learning mechanisms.

Keywords: mathematical knowledge representation, problem solving, intelligent com-
puter algebra system

1995 Math. Subject Classification: main 68T30, secondary 68T35

1. INTRODUCTION

In the last three decades Computer Algebra Systems (CAS) have been widely
used in the automation of scientific computation and design. These systems can
help in the solution of various problems connected with the execution of complicat-
ed and labour-consuming transformations of mathematical expressions. However,
irrespective of their good capabilities, “classical” CAS like Reduce, Maple, Mathe-
matica etc. are sometimes difficult for use. The most serious problem here [2, 3] is
that “classical” CAS behave as black boxes and therefore the interpretation of the
suggested solutions can call for significant efforts.

The reason for this problem is that “classical” CAS have no mathematical
knowledge represented in an explicit, declarative way. Their knowledge is embedded

193

implicitly in the algorithms and is inaccessible to the user.

Therefore a series of successful attempts have been made in order to build
various kinds of the so-called intelligent CAS. In general, intelligent CAS are sys-
tems that are capable to manipulate different types of mathematical knowledge
and use a large set of Artificial Intelligence methods and techniques. Because of
adequacy and efficiency considerations, intelligent CAS usually are hybrid [1, 4] by
means of combining several formalisms and paradigms.

A set of projects aimed at the investigation of different aspects of the inte-
gration of the classical approaches for developing CAS with Artificial Intelligence
methods and tools have been under development at the Faculty of Mathematics
and Informatics, Sofia University. An approach to building intelligent CAS has
been developed [5]. The first version of a knowledge-based tool for developing CAS
called KAM [6] has been implemented. The experimental intelligent computer
algebra system STRAMS discussed in this paper has been under development
using KAM. In general, STRAMS is a knowledge-based CAS that can solve various
types of mathematical problems, learn and explain the results of its work. The
approach used for the development of STRAMS and the major features of this
system are described and argumented in details in [5, 6]. Therefore we emphasize
here on the analysis of the architecture of STRAMS, the contents of its knowledge
base and the implemented mathematical problem solving mechanisms.

2. FUNCTIONAL FACILITIES AND ARCHITECTURE OF STRAMS

STRAMS is a general-purpose intelligent CAS. The definition domain D of the
expressions that can be manipulated in STRAMS includes all expressions contain-
ing numbers, symbols and the functions: +, —, %, /, power function, exponential,
logarithmic and trigonometric functions. STRAMS 1s intended for solvmg the fol-
lowing main problem types:

-— simplification (reduction to a canonical form) of expressions from D;

— symbolic equation solving (solving equations of the form expr; = expr,,
where expr, and expr, are expressions from D);

— symbolic differentiation of expressions from D;

— symbolic integration (formal integration of functions belonging to a particu-
lar subset of D).

The architecture of STRAMS is determined by its functional facilities and
some additional design requirements like transparency and learning and explanation
generation capability. The architecture of the environment KAM used as a tool for
the implementation of STRAMS exerts a considerable influence as well.

STRAMS includes the following functional components: a mathematical
problem solving engine, an explanation module, an interface module, a control
block.

The architecture of STRAMS is shown in Fig. 1.

The mathematical problem solving engine consists of two modules: a knowledge
engine and a learning module realizing respectively the problem solving and the

194

MATHEMATICAL PROBLEM

SOLVING ENGINE
CONTROL BLOCK KNOWLEDGE LEARNING
ENGINE MODULE

INTERFACE
MODULE
¢ EXPLANATION
| MODULE

USER

Fig. 1. Architecture of STRAMS

learning capabilities of STRAMS. The structure and the functioning mechanisms
of the mathematical problem solving engine are discussed in Section 4 of this paper.

The explanation module realizes the explanation generation capabilities of
STRAMS. These capabilities are described in [5, 6] and will not be discussed in
this paper.

The interface module is the component of STRAMS the users are in touch
with. It analyzes the user requests, converts them into the corresponding internal
form and sends appropriate messages to the control block. The current version of
the interface module provides only some relatively primitive communication means
that will be improved in the further versions.

The control block realizes the general control of the system’s work and the
interaction between the other components.

3. KNOWLEDGE REPRESENTATION IN STRAMS

The formalism supported by the environment KAM is used for the knowledge
representation in STRAMS. It is oriented to the description of knowledge about the
properties of the manipulated functions and the methods for mathematical problem
solving defined by these properties. This formalism is described and analyzed in
details in [5, 6]. Here we present it in brief and give appropriate examples.

The knowledge of STRAMS about the properties of the manipulated functions
is described using a special type of rules called rewrite rules. The structure of
each rewrite rule includes the description of a correct transformation of a class of
mathematical expressions and the formulation of some general preconditions for its
performance (if there are any). Examples of rewrite rules:

(z+y)(z—y) =2 -y’
eTe¥ = TtV
t tg b .. : 2k + 1
tgatted with precondition a, b, a + b different from (—*+—)1
1 —tgatghb 2

The description of the methods for transformation of the expressions and
equations STRAMS can manipulate is realized by the so-called generalized rules

tg(a+b) =

195

(methods). Each generalized rule describes a sequence of transformations of the
given expression aimed at its conversion into a particular form. In this sense
usually generalized rules contain sequences of properly grouped rewrite rules. More
precisely, each generalized rule consists of two parts — a precondition and a body.
The precondition is a predicate whose satisfaction is a necessary condition for the
application of the generalized rule and for achieving its purpose. The evaluation
of the precondition of a given generalized rule is the first step of its application. If
the precondition is true, then the body of the generalized rule is performed. The
body of a generalized rule may contain:

— a sequence of rewrite rules. Each of them can include some additional
control information. In this case the generalized rule is called declarative;

— the code of a procedure realizing the application of the rule. Such generalized
rules are called procedural;

— a set of pairs (patfern, procedure) such that when the examined expres-
sion matches one of the patterns, the corresponding procedure is executed. These
generalized rules are called hybrid.

Declarative generalized rules are most numerous in STRAMS. As it was men-
tioned above, the body of such a rule consists of a sequence of rewrite rules that
can be divided in three groups: pre-rules, basic rules, post-rules.

The pre-rules are intended to prepare the given expression for the performance
of the basic rules. The post-rules are used to remove some “defects” remaining
- after the performance of the basic rules.

There are three basic types of declarative generallzed rules according to the
mode of application of their bodies: normal, cyclic and recursive. The body of
a normal generalized rule is performed in the following way. First the pre-rules
are consecutively applied to the given expression. Each of them is executed on
the result returned by the previous one. Then the basic rules are applied in the
same way on the result of the execution of the pre-rules. At last the post-rules are
applied in the described way.

The body of a cyclic generalized rule contains only one basic rule. It is per-
- formed in the following way. First, the pre-rules are executed as in the case of a
normal rule. Then the basic rule is executed. If it has not changed its argument,
the execution of the body of the generalized rule stops and the current result is
returned. In the other case, the corresponding post-rules are performed and then
a cyclic execution of the described sequence of steps is carried out until the basic
rule returns its argument unchanged.

The body of a recursive generalized rule is first executed on the subexpressions
of the given expression and then it is applied to the obtained new argument.

It is possible to construct some combinations between the basic types of
declarative generalized rules. In this sense very attractive are the so-called cyclic
recursive generalized rules that can be used as a proper mean for the description
of some methods for expression simplification (reduction to a canonical form). As
an example of such a method we can examine the transformation called expansion.

196

This transformation can be defined by the equality

(T1+z2+-Fzm)ni+y+)=+ niy+ -+ 21y
+Toy + ToYa + -+ ToYyn

............

+Zmin + Ty + -+ Tm¥n.

It is described in STRAMS by a cyclic recursive generalized rule with a body
containing the following basic rule:

k
13

=1 i=1

n k n k n
HA;($1+22+‘_“+1!m)HB]‘ = HA,'IIlHBj +HA:‘(32+"‘+zm)
i=1 j=1 =1 i=1 '

Another classification criterion of the generalized rules is the role they play
in the problem solving process of a given, relatively complex task (such tasks in
STRAMS are equation solving and symbolic integration). In this sense they can be
classified as key and non-key ones. The key generalized rules play a significant role
in the control of the search in the state graph of the corresponding problem. In the
role of examples of key and non-key generalized rules we give here the descriptions
of two generalized rules included in the knowledge base of the equation solving

subsystem of STRAMS.

Example 1. Isolation. Let an equation eq : expr; = exprs be given and let f
be the outermost function in ezpr;. The execution of the body of the generalized
rule consists in the application of the inverse of f to expr) and ezpry. The precon-
dition of the generalized rule is: the unknown occurs in only one of the arguments of
f and ezpry does not contain the unknown. The goal is to remain in the left-hand
side of eq only the argument containing the unknown.

This generalized rule is a key one and is implemented procedurally due to
effectiveness considerations.

Example 2. Collection. The goal of this generalized rule is to reduce the
number of occurrences of the unknown. Collection is a non-key generalized rule
with no explicit precondition. STRAMS applies it only if none of the key gener-
alized rules can be applied. So the precondition of Collection (and of all non-key
generalized rules) is: there is no key generalized rule with satisfied preconditions.

This generalized rule is declarative, normal. One of its rewrite rules is:

AB + AC = A(B + C) with the precondition A must contain the unknown.

The knowledge of STRAMS about the problem solving methods for the
included types of tasks is described either directly by proper generalized rules or
using specific constructions called schemata. A schema is a sequence of non-key
generalized rules. It describes a definite step in the problem solving process of
a relatively complex task (equation solving or symbolic integration). For a more
precise definition of the concept of a schema one can use the following additional
considerations: '

e each schema is a sequence of at least two non-key generalized rules;

197

e cach schema begins either with the first generalized rule used in the problem
solving process or with a generalized rule applied after the application of a key
generalized rule;

e after the application of a schema either the corresponding problem is found
to be solved or a key generalized rule can be applied.

Thus schemata are a natural generalization of generalized rules. The precon-
dition of a schema is the applicability of its first generalized rule. The goal is to
solve the problem or to be able to apply a key generalized rule after the application
of the schema.

4. STRUCTURE AND FUNCTIONING MECHANISMS
OF THE MATHEMATICAL PROBLEM SOLVING ENGINE

As it was mentioned in Section 2, the mathematical problem solving engine of
STRAMS consists of two modules: a knowledge engine and a learning module. The
knowledge engine includes the so-called inference control block and the following
processing subsystems:

—- a simplification subsystem,;

— an equation solving subsystem,;

— a symbolic differentiation subsystem;

— a symbolic integration subsystem.

The structure of the knowledge engine is shown in Fig. 2.

The processing subsystems realize the main functional facilities of STRAMS
listed in Section 2. Each of these subsystems is a relatively autonomous knowledge-
based system with its own knowledge base and problem solving program. The
typical structure of the processing subsystems of STRAMS is presented in Fig. 3.

KNOWLEDGE ENGINE

PROBLEM SOLVER
INFERENCE CONTROL BLOCK £

KNOWLEDGE BASE

SYMBO - - -
SIMPLIFL- EQUATION mnzxgi SYMBOLIC r SCHEMATA 1
CATION SOLVING TIATION INTEGRATION
LIZE
SUBSYSTEM SUBSYSTEM SUBSYSTEM SUBSYSTEM GENERALIZED RULES
REWRITE RULES
Fig. 2. Structure of the knowledge engine Fig. 3. Structure of the
processing subsystems of
STRAMS

The knowledge base of each processing subsystem includes the set of general-
ized rules and rewrite rules that have been used in solving the corresponding type
of problems. Additionally, the knowledge bases of the equation solving subsys-
tem and the symbolic integration subsystem contain the corresponding schemata
accumulated by the learning module of STRAMS during the system’s work.

198

The problem solver of each processing subsystem realizes the search in the state
space of the current problem of the corresponding type. This problem can either be
formulated by the user or be generated by some of the processing subsystems. In the
role of operators in the state space search the problem solvers use the schemata and
generalized rules available at the moment. The application of the chosen generalized
rules is performed by the generalized rule interpreter supported by the environment
KAM. Some additional search control knowledge has also been used by the problem
solvers. It is formulated as a result of some experiments carried out with the
particular processing subsystems.

The inference control block realizes the interaction between the knowledge
engine and the learning module of STRAMS. The second main function of the
inference control block is to manage the interaction between the particular pro-
cessing subsystems (for example, all processing subsystems generate canonization
problems that are solved by the simplification subsystem).

In terms of the functioning mechanisms of the mathematical problem solving
engine, the method of work of the problem solvers is most interesting. The par-
ticular problem solvers are adjusted copies or simplified versions of one and the
same prototype (the control block of the inference engine of KAM [6]). Therefore
they perform modifications of one and the same algorithm. The differences are in
the kind of the used operators (only generalized rules or schemata and generalized
rules) and in the form of the used search control knowledge.

Let us consider as an example the method of work of the problem solver of
the equation solving subsystem. There are at least two reasons causing our special
interest to this subsystem:

e its problem domain is appropriate for the application of the schemata formal-
ism. Therefore it can do a kind of learning based on the capability for discovering
and memorizing the schemata used in the problem solving process;

e it is well known [7] that the state space of some of the types of equations
admissible in STRAMS is enormous (includes of the order of 10'° states). Therefore
the use of some strategic knowledge in order to avoid the exhaustive search is
necessary from the point of view of the practical applicability of STRAMS.

The discussed problem solver uses for search control purposes a special evalu-
ation function Complezity(eq,var). Complezity(eq,var) is a linear combination of
the number of occurrences VarOccur(eg,var) of the symbol var in the equation eg
and the sum of the nesting depths CommonVarDepth(egq,var) of var in eq:

Complezity(eq, var) = c1VarOccur(egq, var) + coCommonV ar Depth(eq, var).

This function is used in the examination of all equations. Initially, the value of
Complezity(eq,z), where eq is the given equation and z is the unknown, is computed
and the variable initial_ complezity factor gets this value:

initial_complezity_factor = Complenity(eq,z).

Then the problem solver does not explore all equations eq’ in the state graph
of eg that do not satisfy the so-called simplicity criterion:

f(steps_done). Complezziy(eq ,z)-initial_complezity factor

< cg.initial_complezity factor,

199

where steps_done is the number of transformations reducing eq to eq’. In this way
the simplicity criterion plays the role of a heuristics for pruning a part of the state
graph of the current equation in order to avoid the exhaustive search.

Another heuristics used for search control purpose states that the application
of a key generalized rule as an operator can significantly shorten the path to the
solution. Therefore, when a key generalized rule is applied at a given step, the
discussed problem solver continues its work with the exploration of the equation
obtained as a result of the application of this generalized rule. If no key generalized
rule can be applied at the current step, the problem solver looks for a proper schema
leading to the applicability of a key generalized rule.

The general form of the function Complezity(eq,var) and the simplicity crite-
rion, the definition of the function f(n) and the concrete values of the parameters
c1, ¢2, c3 are suggested in [9].

Let us assume that an equation eq has to be solved with respect to the symbol
var. During its working cycle the discussed problem solver supports a list of equa-
tions belonging to the state graph of eq that have to be explored. We shall refer
to this list as eq_list and to its first element as curreni_eq. Then the algorithm of
work of our problem solver can be formulated in general as follows.

S1. Initialize eg_list to the list containing only eq. Initialize initial complezity_
factor to Complexity(egq,var).

S2. If eq list is the empty list, then report failure and quit.

S3. If the equation current_eq is solved, then return current_eq and quit.

S4. If current_eq does not satisfy the simplicity criterion, then remove current_
eq from eq list and go to S2.

S5. If a key generalized rule i1s applicable to current_eg, then replace current_eq
in eq list by the equation obtained as a result of the application of the found
generalized rule to current_eq. Go to S3.

S6. If an existing schema is applicable to current_eg, then modify eg_list by
analogy with S5 and go to S3.

S7. Remove current_eq from eq _list and add to the end of eq list the equa-
tions that can be produced by the application of all non-key generalized rules to
current_eq. Go to S2. .

Whenever an equation is successfully solved, an attempt for the extraction of
new schemata is made. For that purpose the inference control block activates the
learning module of STRAMS. The learning module analyzes the used sequence of
generalized rules, constructs the new schemata candidates (in accordance with the
definition of the schema concept) and merges them with the set of existing schemata.
In this way STRAMS does a kind of unsupervised learning by accumulation in the
corresponding knowledge base of new, successfully applied schemata that can be
used in its further work.

200

5. IMPLEMENTATION OF STRAMS

The implementation of STRAMS has been realized using the environment
KAM. The program modules of the mathematical problem solving engine of
STRAMS are either exact copies or simplified versions of some of the program
modules of KAM. The knowledge bases of the processing subsystems of
STRAMS are built by direct recording of the corresponding rewrite rules and gener-
alized rules in internal form. The knowledge base of the simplification subsystem
includes rewrite rules and generalized rules described in [8, 9], and the knowledge
base of the equation solving subsystem includes rewrite rules and generalized rules
described in [9].

The explanation module of STRAMS is a copy of the module of the same name
of KAM. The interface module and the control block of STRAMS are developed
especially for the purpose. All program modules of STRAMS are written in Com-
mon Lisp.

6. SUMMARY AND CONCLUSION

STRAMS is a knowledge-based CAS with the following main features:

e it can solve various types of problems using a set of methods and techniques,
traditionally taught in the secondary school and in the introductory university
courses;

e it is able to do a kind of learning and explanation generation;

e it can easily be integrated with other software packages;

e its functional facilities can easily be extended. '

These features of STRAMS determine its potential applicability in building
expert systems, intelligent tutoring systems etc.

Our current activities are directed to the improvement of the user interface of
STRAMS and to the extension of its functional facilities.

ACKNOWLEDGEMENTS. This work is partly funded by the Sofia University
SRF under Contract No. 274/1997.

REFERENCES

1. Calmet, J., K. Homann, I. Tjandra. Hybrid Representation for Specification and
Communication of Mathematical Knowledge. In: K. Homann, S. Jacob, M. Kerber,
H. Stoyan (Eds.), Proceedings of the Workshop on Representation of Mathematical
Knowledge, 12th European Conference on Artificial Intelligence, Budapest, 1996.

2. Homann, K., J. Calmet. Combining Theorem Proving and Symbolic Mathematical
Computing. LNCS, 958, Springer-Verlag, 1995, 18-29.

3. Homann, K., J. Calmet. Structures for Symbolic Mathematical Reasoning and Com-
putation. LNCS, 1128, Springer-Verlag, 1996, 216-227.

201

Kapitonova, Y., A. Letichevsky, M. L’vov, V. Volkov. Tools for Solving Problems in
the Scope of Algebraic Programming. LNCS, 958, Springer-Verlag, 1995, 30-47.
Nisheva-Pavlova, M. A Knowledge-Based Approach to Building Computer Algebra
Systems. In: Proceedings of JCKBSE’96, Sozopol, 1996, 222-225.

Nisheva-Pavlova, M. KAM — A Knowledge-Based Tool for Developing Computer
Algebra Systems. Ann. Sof. Univ., Fac. Math. and Inf., 90, 1996 (to appear).
Silver, B. Precondition Analysis: Learning Control Information. In: R. Michalski, J.
Carbonell, T. Mitchell (Eds.), Machine Learning, Vol. 2, Morgan-Kaufmann, 1986,
647-670.

Todorov, B. An Environment for Building Special-Purpose Knowledge-Based Systems
for Computer Algebra. MSc Thesis, Sofia University, 1994 (in Bulgarian).

Vatchkov, V. Learning in Equation Solving. MSc Thesis, Sofia University, 1993 (in
Bulgarian). '

Receit{ed March 4, 1998
Revised May 12, 1998

Faculty of Mathematics and Informatics
“St. Kl. Ohridski” University of Sofia

5 Blvd. J. Bourchier, BG-1164 Sofia
BULGARIA

E-mail: marian@fmi.uni-sofia.bg

202

