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For a random dispersion of identical spheres, the known two-point correlation functions
like “particle-center,” “center-surface,” “particle-surface,” etc., are studied. Geomet-
rically, they give the probability density that two points, thrown at random, hit in
various combinations a sphere's center, a sphere, or a sphere’s surface. The basic result
of the paper is a set of simple and integral representations of one and the same type for
these correlations by means of the radial distribution function for the set of sphere’s
~ centers. The derivations are based on the geometrical reasoning, recently employed by
Markov and Willis when studying the “particle-particle” correlation. An application,
concerning the effective absorption strength of a random array of spherical sinks, is
finally given.
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1. INTRODUCTION

In many cases of great practical interest the macroscopic behaviour of a two-
phase medium is strongly influenced by the amount and the internal distribution of
the interfacial surface. A classical problem of such a kind is supplied first of all by
the theory of diffusion-controlled reactions, as initiated by Smoluchowski in 1916.
Formally, this is equivalent to the problem, concerning a species (defects) diffusing
in the presence of an array of ideally absorbing traps (sinks). Another classical
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problem is the quest for the permeability of porous solids. The reason is that in
both problems the observed macroscopic response is ruled by the events that take
place at the boundary between the phases: in the first case chemical reactants’
encounter (or absorption of defects) happens there and in the second case the
viscous fluid flows around the particle surfaces, where no-slip boundary condition
is to be satisfied. Hence it is natural that in studying both these phenomena the
interfacial statistics should essentially enter the appropriate theories. Perhaps the
first example was provided by Doi [3] who derived bounds on both the effective
sink strength and the permeability. These bounds were put on a firmer base and
generalized by Torquato and co-authors [9, 16, 10, 1]. The bounds include integrals
of the interfacial two-point statistical correlations, which later on were thoroughly
studied within a more general framework by Torquato [15, 14]. An alternative
approach in the absorption context has been proposed by Talbot and Willis [12]
who, using a Hashin-Shtrikman’s type variational principle, derived a bound on the
effective sink strength for a dispersion of nonoverlapping spheres which eventually
utilizes only an integral incorporating the total correlation function. At a first
glance this bound is entirely different from Doi’s one since no interfacial statistics
is even mentioned in Talbot and Willis’ reasoning. As we shall see below, the Talbot
and Willis bound turns out, however, to be identical to that of Doi.

The evaluation of the interfacial statistical characteristics for realistic two-
phase random models meets with considerable difficulties. Only for the simplest
model of fully penetrable spheres (the Boolean model) the needed quantities can be
comparatively easily evaluated, as done by Doi himself. For dispersions of nonover-
lapping spheres — a model that very often is appropriate for particulate type media
— such an evaluation is much more involving, and the reason can be well seen from
the already mentioned paper of Torquato [15]. In the same paper the author notes
that the needed interfacial correlations have a convolution structure which allows,
in principle, to reduce them to single integrals containing the total correlation
functions for the dispersions, provided the Fourier transform is employed in the
statistically isotropic case. No further details are given in [14], however, apart from
appropriate formulae valid for a dilute dispersion, and numerical results for the
semi-empirical Verlet-Weis distribution [18], sece also [13]. (Note that the dilute
results have been derived by Berryman [2] by means of a different approach.)

In the recent paper [7], a simple geometrical reasoning was proposed, which
allowed the authors to represent the two-point correlation function of the region,
occupied by the spheres (that is, the “particle-particle” correlation), as a simple
integral that contains the radial distribution function of the spheres. The aim of
the present work is to demonstrate that the same geometrical reasoning can be
straightforwardly applied when considering the two-point interfacial correlations, if
combined with a formula, noted by Doi [3]. In this way the said correlations will be
reduced to even simpler integrals of the same type as that for the “particle-particle”
one. To accomplish this, the definitions of the three basic interfacial characteristics
are first introduced in Section 2, preceded by that of the simple “particle-center”
correlation. The investigation of the latter in Section 3 serves as a model for a

152



similar treatment of the interfacial characteristics, performed in Sections 4-6. (The
study of the “particle-center” correlation, detailed here, is outlined in the author’s
paper [6].) The formulae for all two-point correlations have a fully similar structure,
which is summarized in Table 1 (Section 9). In Section 7 the first two moments of
the various two-point correlations are directly evaluated by means of an alternative
and simpler method which is applicable in the 2-D case as well. As an elementary
application of the obtained formulae it is finally shown (Section 8) that the Doi’s

bound on the effective sink strength of the dispersion coincides with that of Talbot
and Willis.

2. DEFINITIONS OF THE BASIC TWO-POINT STATISTICAL
CHARACTERISTICS

Consider a dispersion of equal and nonoverlapping spheres of radius a in R3,
whose centers form the random set of points { :na}. The assumption of statistical
isotropy and homogeneity is adopted henceforth. Introduce after Stratonovich [11]
the so-called random density field for the dispersion

Y(z) = Z&(z — Tq), : (2.1)

6(z) is the Dirac delta-function. All multipoint moments of the field ¥(z) can be
easily expressed by means of the multipoint probability densities of the random set
{xa}, but in what follows only the first two simplest formulae of this kind will be
needed, namely,

(¥(z)) =n, F<(z) = (¥(x)¥(0)) = né(z) + n’g(z), (2.2)

where n is the number density of the spheres, and g(z) = ¢(r), r = |z|, is their
radial distribution function, see [11]. The brackets (-) signify ensemble averaging.
Note that the assumption of nonoverlapping implies that g(z) = 0 if |z| < 2a. The
notation F °(z) in (2.2) is justified by the interpretation of the quantity (¥(z)¥(0))
— this 1s the “center-center” correlation, in the sense that it obviously gives the
probability densities of finding centers of particles both at the origin and at the
point z.

Let
¢ 1 ifzek,,

L(z) = { (2.3)

0, otherwise,

be the characteristic function of the region K;, occupied by the spheres. Then
Li(z) = (ha * ¥)(z) =/ha(r -y)¥(y)dy, Ii(z) =/ha($ -y (y)dy, (2.4)

where ¢¥'(y) = ¥(y) — n is the fluctuating part of the field ¥(y) and hy(y) is
the characteristic function of a single sphere of radius a, located at the origin. All
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integrals hereafter are over the whole R? and, as usual, f*g denotes the convolution
of the functions f and g. The simple integral representation (2.4), combined with
the formulae (2.2), serves as a basis for evaluating the needed interfacial statistical
characteristics in what follows. Its simplest consequence reads

m = (li(z)) = nVa, Va=zma’, (2.5)

having taken averages of both sides of (2.4); 1, is the volume fraction of the spheres.
In turn, the two-point correlation most often used is

FPP(z) = (,(0)1;(=)) . | (2.6)

The interpretation of (I,(0)I;(z)) is obvious — this is the probability that two
points, separated by the vector z, when thrown into the medium both fall within
a sphere. That is why (I;(0)/1(z)) can be called “particle-particle” correlation,
which explains its notation F'PP(z) in (2.6).

Before introducing the interfacial characteristics, it is noted that another corre-
lation, closely related to F'PP(z), will be useful as well. This is the “particle-center”
one

F?¢(z) = (Ii(z)¥(0)) (2.7)
which obviously gives the probability that for a pair of points, separated by the
vector z, one hits a sphere’s center while the other falls into a sphere.

It is natural to represent the above introduced correlations as

F(z) =n?+F“(z), FP(z)=nn+F"(z), FPP(2)=n}+F""(z), (2.8)
‘where, as it follows from (2.2), (2.4), (2.6) and (2.7) ,

F*(z) = (¢/(0)¢'(z)) = né(z) + n’va(=),

F(z) = (L(2)¥/(0) = (ha * F ©)(2) = nha(z) + n’ / ha(z = y)va(y) dy, (2.9)

FP () = (I1(2)[1(0)) = (ha * F*)(2) = (ha % ha + F ) (2).
Here

va(y) = g(y) — 1 (2.10)

is the so-called binary (or total) correlation function for the dispersion. Due to the
no long-range assumption, all va(z), F (z), F'* (z) and F " (z) vanish as z — oo,
since the constants in the right-hand sides of (2.8) are just their long-range values.

Let us recall now the definitions of the interfacial correlations. The first one,

F*(z) = (IVL(z)| ¥(0)), (2.11)

can be called “surface-center.” Since |VI(z)| and ¥(z) are delta-functions, the
former concentrated over the surface 0K; of the spheres and the latter over the
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set {z,}, the interpretation of F*°(z) is obvious — this is the probability that if
two points, separated by the vector z, are thrown into the medium, one of them
falls on the surface of a sphere, while the other hits a center &, of a sphere. This
interpretation explains the terminology used here (note that it differs from that
used by Torquato [15], where (2.11) is called “surface-particle” correlation).

The second interfacial correlation is

F*P(z) = (|VIi(z)| I,{0)) (2.12)

— obviously the “surface-particle” one. The reason is that it gives the probability
that one of the two points, separated by the vector z, when thrown into the medium,
falls on the surface of a sphere, and the other falls within a sphere. (Note again the
difference in terminology used here: Torquato [15] calls (2.11) “surface-particle”
correlation, while (2.12) is very closely connected to the “surface-void” correlation
of Doi {3].)
Finally, let )
F*(z) = ([VL(z)|{VL0)]) (2.13)

be the “surface-surface” correlation, which gives the probability that the two points,
separated by the vector z, thrown into the medium, both fall on the spheres’
surfaces. (The terminology agrees here with that of Doi (3] and Torquato [15).)

Let now hy(z) be the characteristic function of the sphere of variable radius b,
located at the origin. Then

gg ho(z) = §(lz| - a). (2.14)

b=a

As a matter of fact, the formula (2.14) was noted by Doi [3] who employed it
for evaluating the interfacial correlations for the Boolean model of fully penetrable
spheres. Coupled with Stratonovich density field (2.1), it gives

VE@) = [ (e -y vy | (215)
’ b=a

since |VI;(z)| is a sum of delta functions, concentrated on the surfaces of the
spheres. The formula (2.15) will play a central role in our study. Its first and
simplest consequence is the formula for the specific surface, S, of the dispersion,
i.e. the amount of the interface in a unit volume. Due to the nonoverlapping
assumption, obviously S = 4ma?n. Formally, the latter formula immediately follows
after averaging (2.15):

d 2
- nE (4311’63) = 4ma‘n. (2.16)

b=a

S = (Vh(E)) =ngy [m(z-v)dy

b=a

Similarly to (2.8), represent the interfacial correlations in the form
F(z) = nS+F%(2), FP()=mS+FP(), F(@z)=S+F"(), (2.17)
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where, as it follows from (2.11), (2.4), (2.12) and (2.13) ,

)
b=a

F @) = (VL@W0)n o hi()

. +n2§5 /hb(r — y)va(y) dy
FP) = (IVI(2)|I{(0)) = (ha * F )(z) = f ha(z — y)F "~ (y) dy,

F*@) = (VAEIIVHOI-S) = (5 ks T)a) (218)

b=a

a = SC -
= [ gphale - 0F<ray

b=a

= 5C

Similarly to (2.8), all F~ (z), F "(z), F " (z) vanish at infinity, since the constants
in the right-hand sides of (2.17) are the appropriate long-range values.

It is noted after Torquato [15] that the “surface-center” correlation (2.11) is
the most important in the sense of (2.18), i.e. the other two — F*P(z) and F'*(z)
— can be easily represented by means of F'*°(z).

It should be pointed out also that all the correlation functions, mentioned in
this section, are particular case of the much more general statistical characteristics
for two-phase random media, as introduced by Torquato [15]. Our aim here will be
however much more specific, namely, derivation of simple integral representations
of these correlations by means of the total correlation function for the set {zo} of
sphere’s centers of the type of Eq. (3.13) below.

3. THE “PARTICLE-CENTER” CORRELATION

Let us split the radial distribution function, g(z), as

9(z) = ¢™(z) + 9(), (3.1)
where |
" (2) = 1 — hpa(z) = 0, if|z| < 2a, | (3.2)
@ =R = > 2, '

corresponds to the simplest “well-stirred” distribution of spheres; g(z) is then the
“correction” to the latter. In turn, the total correlation v;(z), defined in (2.10), is
represented as

va(2) = —haa() + Ta(z). (3.3)

Moreover, one has
va(z) =Pa(z) = §(z), if |z|> 2a,
~ (3.4)
va(z) =g(z), if |z]| < 2a,
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as a consequence of the nonoverlapping assumption. The formula (3.4); will allow
us to replace below g(z) by the binary correlation vo(z) when |z| =r > 2.

Let us recall now the well-known formula for the common volume of two spheres
of radii b and &, the first centered at the origin, the other at the point z, |z| = r:

3, if0<p<p-—r,
(hs * he)(z) = /hb(ﬂr —Yhe(W)dy=Va § Y(p;p,7), fp—7<p<pu+r,
0, fp>p+r,
- (3.5)
where_ 1
Y(p;p,7) = 1—6;(# +7=p)%(p° + 2+ 1)p— 3= T1)2), (3.6)

with the dimensionless variables

p=rla, p=E&/a, T=bfa (3.7)

It is assumed in (3.5) that £ > b, i.e. p > 7. The elementary formulae (3.5) and
(3.6) will play a central role in the sequel.
From (2.8), (3.1) and (3.2) it now follows

FP(z) = Fig(z) + FP(z), - (38)

where

FES(2) = nha(z) — n’(ha * hao)(2)

n (3.9)
= nngha(z) = 1 (3 = (6 + 6p = 3) hsa(2) — ha(2)], |
Fre(z) = n? [ ha(z = 1)) v C (3.10)
This formula implies that ‘
FP(z)=0, if |z|<a, (3.11)

since §(z) = 0 at |z] < 2a, see (3.4)..
To represent FP°(z) as a simple one-tuple integral, containing the functlon
g(z), write down the latter as

o0

g(y) = i 9(A) —hA(y) dA, (3.12)

which follows from (2.14). Then, in virtue of (3.5) (at 7 = 1) and (3.4)2,

ch(x)—n/ dpg(p) (h *hg)(r) _
(3.13)

3nm

p+1
== / (1= (1~ p)°] pva(p)dp.
' P Jmax{2,p-1}
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The obtained simple representation of F'P¢(z) by means of the total correlation
allows one to interconnect the moments

oo
o,fcz/o p*FP(rydp, k=0,1,..., (3.14)

of FP(r) on the semiaxis (0, 00) with the appropriate moments of the total corre-
lation. Indeed, due to (3.8) and (3.9),

6P = P 4 fP°. (3.15)

k,ws

The first term in (3.15) corresponds to the well-stirred distribution when F*<(r) =
FP(z) is given in (3.9); the appropriate integration is elementary. In turn, §PC
corresponds to the deviation g(r) of the radial distribution function from the well-
stirred statistics. Using (3.13) and changing the order of integration give

o0
0y =nm /2 HE (p)pva(p)dp,

p+1
Hi’°(#)=~j—/ PP 1 = (n—p)?] dp.

p—1

(3.16)

The functions HE(y) in (3.16) are polynomials whose explicit evaluation is straight-
forward. In particular,

HY(n) =1, HY(p)=p, ete (3.17)
Hence, if

x : '
mg =/ pa(p)dp, k=0,1,..., (3.18)
2

are the moments on (2, %) of the binary correlation v2(p) or, which is the same, of
the “correction” §(p) to the radial distribution function, then the formulae (3.16)

and (3.17), together with (3.9), imply

-1 1 —
b = nny (s_ﬂl + ml) , 05 =nmn ( 81 + mg) , ete. (3.19)

10171

4. THE “SURFACE-CENTER” CORRELATION

Inserting (3.3) into (2.18), gives

F*(2) = Fula) + F*(2), (4.1)
where 5
F2(z) = né(r —a) — n’ = z — yhag , .
Fos(a) = n(r = a) =y [ (e~ haaliray| (42)
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F*(z) = n _/hb z —y)g(y) dy : (4.3)

b=a
Hence, the first term, F3¢(z), in (4.1) corresponds to the well-stirred distribution,
while the second one, F 5¢(z), is due to the deviation, g(z), of the radial distribution
function from the latter.
Combining (2.18); and (4.2), and using (4.3) (at £ = 2a) give eventually the
“surface-center” correlation (2.11) in the well-stirred case:

0, if0<p<1,
1)(3 -
Fr(z) = né(|z| — a) = nS (o i(ps p), if 1 <p <3, (4.4)
0, if p > 3.

To evaluate the deviation F*¢(z) from (4.3), we shall use once again the rep- -
resentation (3.12):

P =t [ a5 { ooz [mle-wberan} . @s)
Applying (3.5) yields the needed formula
s 0, f0<p<1,
Fe(z P . 4.6
(=) = 2p / pvo(p)dy, ifp> 1. (4.6)
max{2,p~1}

Similarly to Section 3, consider the evaluation of the moments of F'*°(z), i.e.
the quantities -
s _ / K FS(r)dp, k=0,1,... (4.7)
0 .
Due to (4.1), again _
0 01: ws + 026 (48)
— the first term in (4.8) corresponds to the well-stirred distribution and its eval-
uation is elementary; the second is due to the “deviation” g(r). To evaluate the
latter, insert (4.6) into (4.7) and change again the order of integration:

b = nS / HE ()7 (),
’ (4.9)

. 1 A + 1)k = (u - 1)F
pu—1

Hence H(p) = 1, HE () = p, etc. Together with (4.8), (4.4) and (4.9), this
~ implies

0?‘3:725 (l_“_lﬂﬁ-{-ml), 0§°.—_n5(l;8m +m2) , etc. (4.10) ‘

3771 m
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5. THE “SURFACE-PARTICLE” CORRELATION .

First, let us evaluate F'*P(0):

F*(0) = (IVL(0)| 11(0)) =% //ha(yl)hb(y2) (W(y1)¥(y2)) dyrdys

b=a

b
b=a

=% /ha(y)hb(y) dy

(5.1)
having used (2.2) and the fact that g(y; — y2) = 0 if |1h — y2| < 2a, due to the
nonoverlapping assumption. But

= [ham)dy = 5 {

which equals 0 if b > a, and 47b? if b < a. Hence, a question appears, which of the
two values, 0 or S = 4ma’n, should be attributed to F*P(0) when putting b = a in
(5.1) and (5.2). The correct answer is one-half of these two values, i.e.

F*P(0) = % s, (5.3)

ma®, if b> a,

5.2
b3, if b < a, (52)

Wi i

This will be confirmed by the formal calculations below. Roughly speaking, 1/2 in
(5.3) means that the boundary 0K is “equally shared” between the constituents.
We imagine, in other words, that if a point lies in 9K, “half” of it belongs to K,
and the other “half” to K,.

To evaluate F " (z), employ its definition from (2.18) and the formula (2.2):

FP@) = g [ [Raln)(e - ) )0/ e)) dudie | = Arn -+ Aan?,
b=a
| (5.4)
where 5
A= 3% ha(y)he(z — y) dy o (5.5)
= / ha(y2)hs (& — y2) va(ys — v2) dys dys (5.6)
b=a

The coefficient A; can be immediately found differentiating (3.5) at £ = b and
putting b = a in the result:

3(h b)) 2{2—;0, if 0 < r < 2a, (5.7)
—_— * r = ma i
A 0,  ifr> 2,
and hence
1 1—p/2, if0<r<2a,
Ain= =S (5.8)
2 o, if r > 2a.
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The formula (5.8) means that
—Ss 1 r
F**(z) = F®(2) = 55 (1- 2—0) haa(z) + o(n),

which agrees with the result of Berryman [2], see also [14], found by means of
different arguments. _

To evaluate the coefficient A3 from (5.6), we shall literally follow the reasoning
of {7]. Consider to this end the triple convolution

0
(ha v Dhue hA) | = (PPOhaa) * ha) (), (5.9)
b=a
where, according to (5.7),
S Y 2
@*P(t) = | ha * 3 hy ) (7) =na*(2—-1), t=r/a. (5.10)
b=a .

Similarly to [7], we treat ¢°P(t) as pertaining to an inhomogeneous and radially-
symmetric ball whose density decreases along the radius according to (5.10). This
inhomogeneous ball is then approximated, for a given division 0 = § < & <
...éN—-1 < EN = 2a of the interval (0,2a), by a family of concentric spherical
layers €; < r < €i41, each one homogeneous and of density ©*P(&). In the limit
Af,‘ = f,‘ - Ei-l — 0 one finds

2a
(P Ohae) #ha) ) = [P (E/0) 3 b + ha) )

o =%2a 2a
= ¢*P(€/a) (he * ha)(r) l;: . / (he*h,q)(r)b%gos"({/a)df (5.11)

a Jo
,
= 1r02/ (he * ha)(r) dp = 4ma®VaUsp(p; 7),
0

since ¢°P(2) = 0 and h¢ *x hy I = 0. In accordance with the notations (3.7),
£=0
p=¢&/aand T = A/a > 2. The evaluation of the function Usp(p; 7) is obvious,

using (3.5) at b = A in (5.11), and the final result reads
(0D (p;7), 0L p<T-2
U (p;r), ifr-2<p<r,
Ul D(pyr), fr<p<r+2,
L 0, ifp>1+2,

Usp(p; 7) = ¢ (5.12)

161



where

2
U (p; ) = / pdp =1,
0

1 [7° 1 /2
Usf,f')(p;f)zzfo #3d#+4— U(p;r,pu)dp, (5.13)

T—p

1 /2
Uiy =5 [ Wi d
with W(p; 7, p1) defined in (3.6). The integrals in (5.13) can be analytically evaluated,
but the only formulae that will be important for the sequel are

(h * —(?- hy * hz(,) (r) = 47ra2VaUsp(p; 2),

ab

b=a
¢ 1 5 1
1 - =p? —pt i
ridiny 160/) +1gor H0<p<2 (5.14)

Usp(p;2) = ¢ (4= p)%(p* +7p—4)
160p ’
\ 0, if p > 4.

if 2 < p < 4,

Also, it turns out that

0 3r
Usp(p;7) = —Gsp( - 7),

or
), if-2<t<a,
GP(t) = { fP(~1), H0<t<2, (5.15)
0, if 2] > 2,

F2) = 52417 (1)

As a first application of the foregoing formulae, consider the well-stirred ap-
proximation, see (3.2). The coefficient A, from (5.6) then becomes

%,
. A2n2 = —n2 (ha * % hb * hga) (T‘)

and application of (5.4), (5.8) and (5.14) gives eventually
F3(r) =mS + T o(7),

b=a

(1, 1, 5 1 .
- - — <p<
2 1 "1[1 17 T 160”7 +160”]’ r0<p<2
Fus(r) =S (4= p)’(4=Tp - p*)
160p

\0, lpr‘l

(5.16)

m, lf2<p<4,
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In the general case the radial correlation function g(r) is decomposed again as
the sum (3.1), so that

F®(r) = FR(r) + F*P(r), (5.17)

with the well-stirred contribution, given in (5.16), and

FP(r) = n%— //h (y1)hs(z — y2) 9(¥1 — y2) dyrdy: (5.18)

b=a

The evaluation of this integral follows the reasoning of Section 3. Namely, inserting
(3.12) in the right-hand side of (5.18) yields

3 9 ohy
FSP(r):n/ A (ha sh ) r)dA
2a g( )3A ab A ( ) b=a
— 2,2 °°~ a .
=4ma‘n Va/ g(T)g‘Usp(P,T) dr (5.19)
2 T

_mS

P Jmax{p-2,2)

G*P(p — ) Tvo(T) dr,

as it follows from (2.16) and (5.15).

The formulae (5.16), (5.17), (5.15) and (5.19) provide the needed represen-
tation of the “surface-particle” correlation F'*P(r) for an arbitrary dispersion of
nonoverlapping spheres. They imply, in particular, that indeed F*?(0) = S/2, as
it was argued in the beginning of this Section, see (5.3). The correction to the
total correlation function, §(r) = va(r), see (3.4), for the set of sphere centers fea-
tures in the expression for F*P(r) through a simple one-tuple integral in (5.19). It
is noted that the obtained formula for F*P(r) is fully similar to that of Markov
and Willis {7] for the “particle-particle” correlation FPP(r) defined in (2.6). (In
the latter case, let us recall, the counterpart of the function f*P(t) from (5.15) is
f(t) = fPP(t) = (2 +t)3(4 — 6t + t2), see [7, eq. (33b)].) | .

Similarly to the previous Sections, the formula (5.19) allows us to evaluate the
moments of fsP(x) on the semiaxis (0, 00) to be '

: oo
7 = [T o = 08, B (5.20)
- Jo

k = 0,1,.... The well-stirred contribution 6;" “ws can be found by means of an ele-
mentary integration, using (5.16). For the ‘corrections” 63 we have

0P =mS /2 HP (w)pvo(p)dp,

. (5.21)

T
Hi"(#)=/_29"‘1fs"(p—u)dp+] P T P (u— p) dp,

7]
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as it follows from (5.19) and (5.20). Recalling the form of f*P(t) from (5.15), one
easily finds, in particular, H{"(u) = 1, H3?(u) = p, etc., and hence, using (5.16),

5 — 26m 1-—8nm
P _ P _
0 = Sn, ( T5m, + ml) , 05 =8Sm ( 3 + mg) , etc., (5.22)

where mj. are the moments (3.18).

6. THE “SURFACE-SURFACE” CORRELATION

Due to (2.17), (2.15) and (2.2), we have in this case

F¥(z) = Bba //hb(yl)h (z — y2) (¥'(11)¥ (v2)) dy1dy = Byn + Byn?,
be=a

(6.1)

where

62
Bi= e [m@he(z - ) dy - (6.2)
52

B = gz [ [ e~ wvn —wdnan | 63)

The coefficient B; can be immediately found, evaluating the second mixed
derivative 9?/0udT of the function ¥, see (3.5), and putting 4 = 7 = 1 in the

result:
oma (1, i p<2,
By = — .
P L0, ifp>2,

which means that in the dilute case

(6.4)

F¥(z)=F (:v) ihga(x)+o(n).

The latter agrees with the result of Berryman [2] see also [14], found by means of
different arguments.
To calculate B3, consider again the appropriate triple convolution, similar to

(5.9):

(aab hb * 666 hc * hA) (7') b o a: ((‘P”(E/a-)hml) * hA)(r)
§=2a 2
=o€/ beena)0)| = [eer)Ogewan O

=Tma (hza * h,q_) (T) + 4maV,Uss(p; 7'),
having used that .

o) = (b g he) )

2ma

= —t"'hZa( ),

be=a
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t = r/a, see (6.2) and (6.4). The function Us(p; 7) in (6.5) has the same form as
that of its “surface-particle” counterpart Usp(p; 7) in (5.12), with the functions

1 2
UdP(p;7) = /ﬂdy:l,
U(II)(p'T)zl/T-p du+l/2 L W(pirp)d (6.6)
S8 ] 2 0 I‘ 2 pz p’ )l‘l "‘) .

1 /%2 1
Us(sIII)(p;T):‘?/ — ¥(p; 7, 1) dp,
"2 i

where ¥(p; 7, 1) is defined in (3.6). The integrals in (6.6) can be analytically eval-
uated, similarly to those in (5.13), but again the only formulae important for the
sequel are, first,

(_66_5 hp * 56- he * h2a> (r) = ma(haq * hga)(r) + 47aV,Uss(p; 2),

be=a
(-t L iro<p<o
8P 64/’, HUsSps 4 (6.7)
L 9Y — _ )3
64p
\ 0, if p2> 4.
Second, it turns out that
a S8
5 Un(pi7) = 16 G (o= 7)

3*(t), if—2<1<0,
GE(t) = { fi(~1), f0<t<2,
0, if |t > 2,

) =2+

(6.8)

In the well-srirred case, as it follows from (3.5), (6.1), (6.3), (6.4) and (6.7),

Fin(e) = o { 2haa(e) = 15— 4700+ Ohaale) + 40(ri2)] } . 69

In the general case g(r) is once again decomposed into the form (3.1), so that
F*(r) = Fan(r) + F*(), (6.10)
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with the well-stirred part, F:,i(r), given in (6.7), and

~ ©_ 9 [Ohy Ok
SS — 2 ¢
F (")""/ ok, (66 * B

2a

*hA)(r)dA

bc=a

- /2°°3(r) a% {,,-a(hza # ha)(r) + 47aV, Uss(p; T)dr} (6.11)

p+2
=St [ ==+ G- )] ri(r)dr,

B Ep— max{p—2,2}
as 1t follows from (2.16), (3.5), (3.6) and (6.8), 7 = A/a. Taking into account (6.8),
we can recast (6.11) into the following final form:

- 52 p+2
F®(r) = -———/ G*(p — 1) Tvo(7) dr, (6.12)
P Jmax{p-2,2}

where the function G*° has the same form as G§® in (6.8), but with the function
f53(t) replaced by

2t = %(2 +1). (6.13)

For the moments of " (z) on the semiaxis (0,00) we have, similarly to the
previous sections,

oo
is:/ p".F'.ss(r)dpz kws t08, k=0,1,...,
0

e = 52 / HE ()13 () dp,
2 (6.14)
=2

1 [* . ;
His(#)=z{/ 2/)" 1(2+p—#)d:o+/ p* l(2+u—p)d;o},
p— I

HP(p) =1, H'(p)=p, etc

The well-stirred contribution, #§° ., can be elementary found by means of (6.9). In
particular,

1—5m 1 —8n
55:32( +m), ssssz( +m), 6.15
! 3m ! 2 3m 2 ( )

where my are the moments (3.18).

7. DIRECT EVALUATION OF THE FIRST TWO MOMENTS OF THE
CORRELATION FUNCTIONS

In the application to be dealt with below (Section 8), the first moments like
%P, 7%, etc., will be of central importance. They were evaluated in the preceeding
sections as consequences of the appropriate integral representations of the two-
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point correlations through the radial distribution functions. There exists, however,
a simpler and more direct method, based on the interconnections (2.9) and (2.18).
The method works equally well in the 2-D case, when the derivation of the coun-
terparts of the above integral representations for the two-point correlations should
be considerably more complicated. (The reason is that the common surface of two
circles in the plane is not already a rational function of the distance between the
circle’s centers and their radii, in contrast with the 3-D simple function (3.6) that
gives the common volume of two balls.)

Integrate (2.9) over the whole R? and introduce (3.1) in the result:
/ FP(z)dz = 47a®05° = nV, + n*V,(—Vaa + 47a®my),

having used the definition of mg, see (3.18). Since V3, = 8V, and nV, = 1, the
already known formula for 5 immediately follows, cf. (3.19).

Integrate next (2.9)3 over R%:
/F-pp(a:) dz = Va/_fpc(x) de, ie. 05 = V,05°,

or

1-8
ng = 1]:1') ( 31’11’1 + mz) (7.1)

— a formula derived in [7] by means of the appropriate integral representation of
FPP(z) through the radial distribution function.

The reasoning is fully similar in 2-D; only the volume V, = 27a® is replaced
by the surface S, = wa?, n; = nS, and Sy, = 4S5,, which yields

/ch(x) dz = 27ra2/P~F-pc(x) dp = 2ma®60}", 07" = Sa0%",
(7.2)

pc _ PP — in 2-D.
01 n ( 9 + ﬂlm1> y 1 m ( om +my :

Note that the correlation function F'PP(z) should be positive definite for any
realistic random constitution, see, e.g. [17]. This implies, in particular, that in
the 3-D case 657 > 0, because 65° is proportional to the value of the Fourier
transform of FPP(z) at the origin; similarly, 65° > 0 in 2-D. From (7.1) and (7.2)
it follows then that the well-stirred approximation (3.2) (for which m; = m; = 0)
is admissible only if 7; < 1/8 in 3-D and 7, < 1/4 in 2-D (more generally, if 7, <
1/2¢ in a d-dimensional space). Both these critical 3-D and 2-D values have been
conjectured by Willis [19] who noticed that the quasi-crystalline approximation in
the wave propagation problem in random dispersions fails if 7; is bigger. A rigorous
justification of this conjecture in 3-D was proposed, e.g., in [5] and [7].
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For the interfacial correlation, the formulae (2.18) are to be employed in a
similar manner. Namely, integrating (2.18); over R?, together with (3.1), gives

a
+n2/-a—b (%wb3)

=4ra’n + 4ra’n?(—8V, + 4mamy),

va(y) dy

4ra’05 = n2 (%wb:’)
b=a (73)

0b

b=a

and it remains to notice that n/a = nS/(37n,) in order to reproduce the formula for
5¢, cf. (4.10).
Integrate next (2.18), over R®:

/f"’(z)dx - va/Fsc(x) dz, ie. 6F = V6, (7.4)
cf. (5.22). Finally, from (2.18), it follows
/Fss(x) dz = 41ra2/7“(.7:) dz, ie 6% = §0‘c = _S_O;p,
n M

cf. (7.4) and (6.15).
The 2-D counterparts of the above moments are immediately derived. The

counterpart of (7.3) now reads

2ma’dse =ni (mb?)

o va(y) dy

b=a

d
2 | ¥ 2
b=a+n ‘/66 (wb)

=2man + 21ran2(-4Sa + Qﬂ’azml),

so that
' 1 —4m

2m

where L = 2ran is the “specific length” — the 2-D cbunterpart of the specific
surface S = 4ra’n in the dispersion; we have also noted that 1/a = L/(2m) in this
case. In turn,

05 = nlL ( + ml) in 2-D, (7.5)

1—4n L 1~ 4 .
6P = C=1L 0% = —05¢ = L2 | ——— -D.
1 = Saf} m( o +m1), 1 =0 ( o +m1) in 2-D
(7.6)

To find in 3-D the moments 6%°, 657, etc., multiply first the formula (2.9); by
G(z) = 1/(47|z|) and integrate the result over R®:
0 = [G@F"(2)dz = n [G(e)ha(e)do -+ n? [ alura) dy

a2

=n4 - n? / ©a(y)h2a(y) dy + n /'ylzza%(y)vz(y) dy,
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where

(3a2 - r2)/6, ifr<a,
a3/(3r), if r > a,

is the well-known harmonic potential of a sphere of radius a. Elementary integra-
tion, using (7.7), reproduces the formula for 87°, cf. (3.19).
In turn, multiply (2.18)3 by G(z) and integrate over R>:

azofp - / G(z)F™(z)dz = / va(y)F  (y) dy. (7.8)

But, as it follows from (7.7),

pa(z) = (G * ha)(z )—{ (7.7)

Var ha(z), (7.9)

wa(z) = VuG(z) + [%(302 —r?) -

which is introduced into (7.8):

1 V.
20PP _ 42V gPC 1(3q2 — 2y _ Yo
a’0t? = a’V, 0} +/[6(3a r*) 41rr] ha(z)dz.

It remains to notice that " (z) = nn, if |z| < a, as it follows from (3.8), (3.9) and
(3.11), so that the integral in the last formula equals —a?n;/10 and therefore

c 2-9
PP = V6% — 10 m( 5171”‘ +m1) (7.10)

— a result, also derived in {7] by means of the appropriate integral representation
of FPP(z).
For the interfacial correlation we have, first of all

220 = / G(z)F*(z) dz |
(7.11)

v2(y) dy,

b=a

| 9
dz + n2[53 e5(y)

—n/G(z)— hy(z

see (2.18);. Using (7.7) and (3.1) reproduces the formula (4.10) for 03¢ after simple
integration. In turn, from (2.18) it follows

w0 = [G@)F (@) de = [p)F () do.

Inserting here (7.9) elementary yields the already known formula for 6}, cf. (5.22).
Finally, from (2.18)3 one has

F*(y)dy

b=a

a’63® = /G(z)?ss(x) dz =

= 41ra2/G(:t)~F‘-sc(x) dz +/a (l - -z-) F*(z)hy(z) dz
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having used that

Waﬁoablfx) = 47!'02G(x) +a (l - g) ha(z), (7.12)

b=a
which follows from (7.9). But fsc(a:) = né(r — a) — nS, as it is seen from (4.1),
(4.2) and (4.6), and the known formula (6.15) for #5* shows up once again.

8. THE DOI-TALBOT-WILLIS BOUND

.As a first and simplest application of the integral representations of the vari-
ous kinds of two-point correlations, derived in Sections 2 to 6, consider a dispersion
of ideal and nonoverlapping spherical sinks (the phase ‘1’), immersed into an un-
bounded matrix. The governing equations of this well-known problem read

Ac(z)+ K =0, z€Ks cfz) = 0. (8.1)
0K 2
This equation describes the steady-state behaviour of a species (defects), gen-
erated at the rate K within the matrix phase ‘2’, occupying the region K3, and
absorbed by the sinks (the “trapping” phase ‘2’) in the region X; = R*\K,. Then
the creation of defects is ezactly compensated by their removal from the sinks, so
that in the steady-stae limit under study

k2 {c(z)) = K(1 — ). (8.2)

The rate constant £*? is just the effective absorption coefficient (the sink strength)
of the medium. Its evaluation and bounding for special kinds of random constitution
and, above all, for random dispersion of spheres, have been the subject of numerous
works, starting with classical studies of Smoluchowski (1916), see, e.g. [4, 3, 12, 9,
16] et al. (Note that we have added the factor 1 — 1, in (8.2), due to the fact that
in the case under study, defects are created only within the phase ‘2’ (the sink-free
region), see Richards and Torquato [8] for a discussion.)

We shall confine the analysis to variational bounding of the sink strength k*2,
taking into account the foregoing two-point statistical characteristics. Recall to
this end the variational principle of Rubinstein and Torquato [9].

Let A be the class of smooth and statistically homogeneous trial fields such
that : :
A={u()| Au(z)+ K =0,z € Ka}. (8.3)
Then ”

E*2 > K*(1—m) '
~ (L(2)|Vu(z)]?)
The equality sign in (8.4) is achieved if u(z) = ¢(z) is the actual field that solves
the problem (8.1).

(8.4)
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Since (I;(z)|Vu(z)[?) < (|[Vu(z)|?), another bound immediately follows from
(8.4), namely,
~ (IVu(e)?)
see [9]. Though weaker than (8.4), the evaluation of the bound (8.5) is simpler,
because it obviously employs smaller amount of statistical information about the
medium’s constitution.

Following Doi [3] and Rubinstein and Torquato [9], consider the trial fields

(8.5)

u(z) = K [ 6z =) (1) - V1)) av, (5.6)

where G(z) = 1/(4n|z}). Since AGo(z)+6(z) = 0, it is easily seen that Au(z) = K
if £ € Ko, and therefore the fields u(z) in (8.6) are admissible. The constant & 1s
uniquely defined from the condition that the integrand in (8.6) should possess zero
mean value: '

(I(y)) —€(IVI(y)) =n2— €S =0, ie &=& =m/S (8.7)
For this choice of &, the trial field (8.6) becomes

u(z) = —K / Gz — ) [L(y) + (VL) - 5)) dv,

and hence ‘
(IVu(@)?) = K* (677 + 26065 + £567°) ,

after an obvious integration by parts. Using (8.7), (8.5) and the formulae for the
appropriate moments (7.10), (5.22) and (6.15) leads eventually to the bound

. 3m(l—m)
k*2a% > , 8.8
= 1=5n —n?/54 3pm, (8:8)

which coincides with the bound derived by Talbot and Willis [12] by means of
an ingineous variational procedure of Hashin-Shtrikman’s type, see (6] for more
details and discussion. The fact that the original Doi’s result, for a dispersion of
nonoverlapping spheres, can be recast in the elegant Talbot and Willis’ form (8.8)
was noticed by Talbot (unpublished manuscript) and, independently, by Beasley
and Torquato [1], who apparently were not aware of the paper [12]. Due to all these
reasons it seems proper to call (8.8) Doi-Talbot-Willis bound. Another variational
procedure that leads to (8.8) has been recently proposed by the author [6].

9. CONCLUDING REMARKS

In the present paper we have represented all two-point correlation functions
(2.9) and (2.18) for a random dispersion of nonoverlapping spheres as single inte-
grals containing the binary correlation function vo(r) for the random set of sphere’s
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centers. The reasoning of the recent paper [7], where only the “particle-particle”
correlation has been treated in detail, has served as a basis of the analysis. The rep-
resentations for all two-point correlations have one and the same structure, which
can be summarized in the following formulae:

== cor

FX(p) ="+ F 7 (p),  lim F*(p) = 0,
Fr(p) =F " + F(p), (9.1)
- P+
Fr(p) = Foco‘“/ G"(p — 1) Tva(T)dT,
max{p-4,2}
where '
feert),  if-p<t<o,
Gr(t) = ¢ f(=1), f0<t<pB, (9-2)
0, if Jt| > B.

In (9.1) and (9.2), F" is the long-range value of the appropriate correlation,

cor(p) — its part that decays at infinity; F$o" is the contribution to the latter,
generated by the well-stirred part (3.2) of the radial distribution function g(r) for
the set of sphere’s centers, and F<°*(p) is due to the “deviation” g(r) of g(r) from
the well-stirred one, cf. (3 1) (recall that g(r) = va(r) if r > 2a, see (3.4)). The
parameter @ takes the values 1 or 2, depending on the kind of correlation under
study. We note also that

Gcor(t) - fcol'(t)’ if Itl S ﬂ)

provided f°°*(t) is even, which is the case with “particle-center” and “surface-
center” correlations (for which 8 = 1), see (3.13) and (4.6).

For the sake of completeness, the function f°(t) for the “particle-particle”
correlation F ¥ (z) is also given, see [7]. In this case, the well-stirred contribution
reads

([ __ 3 L a +3n)p>  9mp?
4(1=m)  16(1—m)  160(1 — )
6
mpe .
- + , if0<p<2,
Foa(r)=1¢  2240(1—m) - g (9.3)
m  (p—4)"(36 —34p—16 p® — p%) :
\ 07 lf P Z 4,

see once again [7] for details and references.
Another set of useful formulae, derived in the paper, concerns the moments

o§°r=/ AT (o) dp, k=12,... (9.4)
0
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TABLE 1. Notations, parameters and functions in the integral representations (9.1)
of the various two-point correlations

Correlation Notation | FF Foo(r) feor(t) 8
center-center Fee n? né(z) — n?hya(z) - -
particle-center FPe nmny Eq. (3.9) ;(1 ~t?) 1
surface-center Fs¢ nS Eq. (4.4) % | 1
pa.rticle-p&ljticle | FPrpP n? Eq. (9.3) %(2 +1)3(4 - 6t + 12) 2
surface-particle F#pP n? Eq. (5.16) %(2 + )2 (1-1) 2
surface-surface Fs n? Eq. (6.9) %(2 + t) 2

of the two-point correlations (2.9) and (2.18). For an arbitrary k, they can be
evaluated by means of the representations (9.1), summarized in Table 1, and thus
interconnected to the appropriate moments (3.18) of the binary correlation. In
the cases ¥ = 1 and k = 2, which seem to be most interesting for applications,
evaluation of (9.4) does not need however the aforementioned representations, but
can be done directly, using, as a matter of fact, just their definitions. This was
illustrated in Section 7. The results, concerning #5°" (in 3-D) and 6{°" (in 2-D), can
be concisely summarized in the simple formulae

1—87]1

+ mz) in 3-D,
3m

h egor :FCOI‘ (
(9:5)

o5r =F* (-—-—1 ;1721’71 + ml) in 2-D,

where F<" are the long-range values of the appropriate correlation, see Table 1 and
Egs. (7.1), (7.2), (3.19), (4.10), (6.15), (7.5) and (7.6).
In 3-D the moments #§°" have a form, similar to (9.5):

61°" = F" (T7°"(m) + ma), (9-6)

but now the functions T¢°(n;) are specific for different correlations. They are
listed in Table 2, in which the foregoing formulae (3.19), (4.10), (6.15) and (7.10)
are simply put together.
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TABLE 2. The functions Tlc°’(m) in Eq. (9.6) for the various two-point correlations

Correlation FPc Fsc FPP Fsp Fss

5 —19m 1-11m/2 | 2-9m | 5—267; 1-5mn

TCOI’(,,)1 )
1 107, 3m 5m 15m 3m
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