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1. INTRODUCTION

Notation. Let E = [E® n > 1, be an n-dimensional real Euclidean vector
space with origin 0. A convex compact subset of E is called convezr body (in E)
or just a body; a convex body need not have necessarily interior points, e. g. a line
segment and a single point in E are convex bodies [20]. The class of all convex
bodies of E will be denoted by K = K(E); in this work the empty set is not an
element of K. The elements of [E are called one-point sets or degenerate bodies.
The field of reals is denoted by R.
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The set K is closed under the operations

A+B = {clc=a+b acA beB}, ABEeK, (1.1)
a*B = {c|le=ab be B}, Bek, a€R, (1.2)

called resp. (Minkowski) addition and multiplication by scalar. Operation (1.1)
is well-known operation in algebra, see e.g. [1, Ch. I]. Operation (1.2) is not so
familiar; it is used in comparatively new areas like set-valued, convex and interval
analysis. The symbol “¥” in (1.2) will not be omitted throughout the paper in
order to avoid confusion with the multiplication by scalar in a linear system. The
latter will be further called a linear multiplication by scalar and will be denoted by
“”. the dot “” may be omitted as in the expression “ab” in (1.2).

Addition. We recall some properties of (1.1). For A, B, C € K we have

(A+B)+C = A+(B+0), (1.3)
A+B = B+ A, (1.4)

hence (K, +) is a commutative (abelian) semigroup. There exists a neutral element
in K — the origin 0 of E" — such that for all A € K

A+0=A4A, (1.5)

hence (K, +) is an abelian monoid (cf. [9, Ch. 2], which will be also denoted (K, 0,+)
(to avoid misunderstandings, we shall usually denote the algebraic systems together
with their operations).

It has been proved (see, e.g., [16, Lemma 2], or [20, p. 41] that the monoid
(K, +) is cancellative, that is, for A, B, X € K the cancellation law holds:

A+ X=B+X = A=B. - (1.6)

The extension method. We recall that an abelian group is an ordered
quadruple (G, +, 0, —) satisfying relations (1.3)-(1.5) and (1.7). An abelian monoid
(S,+,0) turns into a (abelian) group if there exists an operation opp : § — S
such that

opp(A)+ A =0 forall A€S; (1.7)

instead of opp(A) we shall also write —A or (whenever needed to avoid confusion)
—gA. Abelian cancellative monoids and abelian cancellative groups play important
role in this study, for brevity we shall write “a.c.” instead of “abelian cancellative”.

In the a. c. monoid (K, +, 0) there is no opposite, hence the latter is not a group.
However, there is a standard algebraic construction, further referred to as “the
extension method”, which allows us to embed isomorphically every a.c. monoid
(Q,+,0) into an a.c. group (G,+,0,—) (see, e.g., [1]~[4], [7], [8]). Briefly, the
extension method consists in the following: define G = (Q x Q)/p as the set of pairs
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(A, B), A, B € Q, factorized by the equivalence relation p : (A, B)p(C, D) <= A+
D = B+C. Addition in G is defined by means of: (A4, B)+(C, D) = (A+C, B+ D).
We shall denote the equivalence class in G, represented by the pair (A4, B), again by
(A, B), thus (A, B) = (A+ X, B+ X). The null element of G is the class (Z, Z); due
to the existence of null element in Q, we have (Z, Z) = (0,0). The opposite element
to (A, B) € G is —(A, B) = (B, A); indeed (A, B) + (—(A, B)) = (A,B)+ (B, A) =
(A+ B,B+ A) =(0,0). Instead of (A, B) + (—(C, D)) we write (A, B) — (C, D);
we have (A, B) — (C,D) = (A,B)+(D,C)=(A+ D,B+ C).

To embed isomorphically @ into G, we identify A € @ with the equivalence
class (A4,0) = (A+ X, X), X € Q. Thus all “proper elements” of G are pairs (U, V),
U, VeQ suchthat V+Y = U forsomeY € Q,i.e. (U,V)=(V+Y,V)=(Y,0).

The group (G, +, 0, —) obtained by the extension method is minimal in the sense
that if (G', +,0,—) is any group in which (Q, +,0) is embedded, then (G, +,0, —) is
isomorphic to a subgroup of (G’, +,0, —) containing (Q, +,0). The group (G, +,0,—)
is unique up to isomorphism; we shall call it the extension group induced by (Q, +,0).

Multiplication by scalar. Recall now some properties of (1.2). For A, B € K,
v,6 € R we have

y¥(A+B)=vyxA+yx*B, (1.8)
v+ (65 A) = (16) 5 4, )
1xA= A (1.10)

where yé denotes the (linear) product of v, 6§ € R. The set of convex bodies together
with operations (1.1), (1.2) will be denoted (K, +,R, *) or (K,E, +,R, *).

Property (1.8) is known as “first distributive law”. The so-called “second
distributive law” is characteristic for any linear (vector) system, e. g. in the linear
system (E",+, R, ) we have for every C' € E"

(@+8)-C=a-C+8-C, o fER N (BtY

We recall that a system (G,+,RR,-) is linear if: 1) (G,+,0,—) is an abelian
group; 1i) for all a,b,c € G, o, 3,7y € R

4

y-(a+b)=7-a+7-b |
- (6-a) = (v6) - a;
l-a=a; G

| (a+B8) - c=a-c+B-c

-

The last relation in (1.12) is the second distributive law. Recall that in a linear
system we have 0-a = 0 and (—1) - @ = —a, hence we may omit the symbols “0”
and “=” in the notation of a linear system. )

The second distributive law (1.11) is not valid in (K, 4, R, *), apart of certain
special cases. For example, for C' € K and equally signed scalars a, § we have

(a+B)*C=axC+p+xC, af >0. (1.13)
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Convex bodies are a.c. monoids with scalar operator satisfying (1.8)-(1.10),
(1.13), see e.g.. [16, 17). It has been shown that such algebraic structure, called
R-semigroup with cancellation law, is characteristic for convex bodies [18].

Denote by (£, +,0,—) the group induced by the semigroup of convex bodies
(K,+,0), £ = (K x K)/p. The following question arises:

Question 1. Can we embed isomorphically (K,+,R,*) in a linear system
(£, 4, R, ) with £ = (KxK)/p? In other words, can we isomorphically extend (1.2)
in £, so that £ (which is a group under addition) becomes a linear system, that is
(1.12) are valid in £? '

H. Radstrom shows that if we define a multiplication by scalar “” in £ in
terms of the multiplication by scalar (1.2) in K using the relation
(yxA,yxB), 7120,
v-(A,B ={ (1.14)
(4.5) (7] * B, |yl * 4), 7 <0,

then (£,+,RR,-) is a linear system, that is relations (1.12) hold true in £ (see [16,

Theorem 1)).
Formula (1.14) does not induce an isomorphic embedding of (K,+, R, *) into

the linear system (£,+,R,). To see this, recall that under an isomorphic em-
bedding the element U € K is identified with (U,0) € L, hence the element
U =+v+ A €K is identified with (y * A,0) € L. Therefore the equality

7-(A,0)=(y*4,0) (1.15)

should hold true for all A € K, ¥ € R. However, (1.15) does not hold true for ¥ < 0,
A€ K\ E. Indeed, from (1.14)

v (A,0)=((—7)*0,(=7) * A) = (0, =y * A) # (v * A,0),

where the last inequality follows from A 4+ (—-1)* A # 0 for A € K\ E.
An isomorphic extension of the multiplication by scalar (1.2) in £ is given by
the expression

v+ (A, B)=(y*xA,v*B), A, BeK, reR. (1.16)

For nonnegative scalars, (1.14) and (1.16) coincide, and an embedding theo-
rem for convex cones holds true (see [16, Theorem 2}). Note that: i) the system
(K,+,R, %) is not linear, and ii) the induced via (1.16) system (£, +, R, *) is not
linear as well. We shall investigate in more detail the algebraic properties of these
two systems of convex bodies. In particular, we shall point our attention towards
extending relation (1.13) to include the case @ < 0 and shall consider the following
question:

Question 2. Can we embed isomorphically (K, +, R, #) into (£, +, R, ), where
the operation “x” in (L, +,[R, #) is defined by (1.16), and what are the properties
of the system (£, +, R, *)?
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To answer this question we shall formulate some new algebraic properties of
the original system (K, +,R, x). Since we know that (1.8)-(1.10) hold true, what
remains to be studied is distributivity. We therefore concentrate our attention to
distributive relations, both in X and £. We first prove a modification of (1.11)
in K, called quasidistributive law, which completes (1.13). We then find out the
distributivity relation in £ induced by (1.16) and call it “g-distributive” law. With
the establishment of the distributivity relations in K and £ we are able to give
abstract definitions of X and L as algebraic systems, arriving thus to the concept
of “quasilinear” and “g-linear” systems. We study the isomorphic embedding of
the quasilinear system of convex bodies into the g-linear system of factorized pairs
of convex bodies. We shall show that in a g-linear system relation (1.14) defines
a linear multiplication by scalar, hence every g-linear system involves a linear one.
Some of our results related to intervals, i. e. for convex bodies in E', are published

in [11, 12].

2. MINKOWSKI SUBTRACTION

A set A of the form A=z + B, forz € E, B € K, 1s called a translate of B
(by the vector x). Clearly, if A is a translate of B by z, then B is a translate of A
by -z, B= A - z. |

Let A, B € K. The expression

AXB=()(A-b) (2.17)
beB

is introduced for convex bodies and studied by H. Hadwiger (see, e. g., [5, 6]) under
the name Minkowski difference. We consider (2.17) as a partial operation defined
whenever the right-hand side is not empty. The following equivalent presentation
of (2.17) holds:

AXB = {z€E|z+ BCA} (2.18)

Expression (2.18) says that A * B is the set of all vectors z such that the
translate of B by z belongs to A. If there exists at least one ¢ € E such that
t+ B C A, then A X B is well defined and t € A £ B; in this case we shall write
B <pm A. As usual, we shall write B =p A if both B <3 A and A <js B hold,
that 1s, there exist t,s € [E such that t + B C A and s + A C B. In other words,
B =um A Mf there exists p € E such that A+p = B (then A = B—p), that is A and
B are translates of each other. In particular, B C A implies B <p; A. From (2.18)
we have for A, B € K [6]

(A% B)+BC 4, (2.19)
(A+B)XB=A. (2.20)
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For A, B € K we say that B is a summand of A if there exists X € K such that
A = B+ X (then X is a summand of A, too). Thus, we see from (2.19) that if B
is a summand of A, then A * B is a summand of A (see [20, Lemma 3.1.8]):

(AXB)+B=A (2.21)

In other words, if for A, B € K some of the equations A+ X =B, B+Y = A
is solvable, then the corresponding solution is X = B X A, resp. Y = A X B. The
following equality has been established in {6]:

Ax(AXB)=AxAX)%B. (2.22)

According to (1.13) for af > 0 the expression (« + 3) * C can be written as a
sum of the two terms of a*C and B*C. Can we express (a+ ) *C in a similar way
in the case af < 0?7 The answer is positive. H. Hadwiger [6] proves the following

equality:
(/\—y)v*A=,\*A.£.p*A, A>pu>0. (2.23)
Relation (2.23) can be rewritten in the following form, cf. also [14:
(a+AN*C=axCE(-P)*C, a>0, —a<p<0. (2.24)
Hence, for af < 0, (2.24) can be written more symmetrically as

[ axC 2 (=p)*C, if|al> |8,
(a-}-ﬂ)*c—{ ﬁ*c_*_(_a)*c, lfla'<',3|

3. SUMMABILITY

To formulate and prove a generalization of (1.13) in K, which is valid for all
a, B € R, we first concentrate on some further properties of the convex bodies,
related to Minkowski subtraction. For our purposes we shall make use of the
cancellation law (1.6): A+ X =B+ X = A=Bfor A,B,X€K.

For given A, B € K, if there exists an X € K such that B is a summand of
A (i.e. B+ X = A), then, due to (1.5) and (1.6), we have in £ the presentation
(A,B)=(B+ X,B) =(X,0).

"Proposition 1. For A,B € K, if B is a summand of A, then there exisis a
unique X € K such that A=B + X.

Proof. By assumption, there is some X € K such that A = B+ X. Assume that
X' € K, with X’ # X, is such that A = B+ X’. Then we have B+ X = B+X'
which by the cancellation law (1.6) implies X = X', a contradiction. O
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Proposition 2. Let A, B € K. The equality A4+ B =0 implies A, B € E and
B =-A.

In what follows we shall symbolically denote the relation “B is a summand
of A” by B <y A, or A >y B; “<;” is a partial order in K. The assertion “B
is not a summand of A” will be denoted by B £, A. Obviously, B <;; A implies
B <m A; however, the inverse is not true.

Generally speaking, for every A, B € K there exist four possibilities: 1) B <y
A and A £5 B, denoted B <y A; 2) A <; B and B £, A, denoted A <, B;
3) A<z Band B <y A, denoted A =5 B; 4) A £, B and B £, A. Note that
A =y B 1s equivalent to A =ps B, that is A and B are translates of each other.

In cases 1)-3) we say that the pair (A, B) € L is X-comparable. We shall
further denote the set of all ¥-comparable pairs by L. Clearly, if (A4, B) € Ly,
then at least one of the expressions A X B, B X A is well defined.

In case 3) there exists a unique X € K such that A = B + X and a unique
Y € K such that B = A+ Y. Summing up both equations, we obtain A + B =
(B+X)+(A+Y) = (A+B)+X+Y,and by (1.6), X+Y = 0. By Proposition 2, the
solutions X, Y are opposite to each other; they belong to the set [E of degenerate
convex bodies (one-point sets). Thus, in case 3) A is a translate of B by the
vector P, and, conversely, B is a translate of A by —P, that is B = A + (—P),
where —P = —g P is the opposite of P in [E (the point sets P and — P are symmetric
with respect to the origin 0 of E).

We summarize the above arguments in the next proposition.

Proposition 3 (7-property). Let A,B € K(E), (A, B) € L. For the equa-
tions

B+X = A, (3.25)

A+Y = B (3.26)

exactly one of the following three possibilities holds true:

1) Case B <y A: there exists a unique nondegenerate conver body X € K\ E
satisfying (3.25), equation (3.26) is not solvable.

2) Case A <y, B: there ezists a unique nondegenerate conver body Y € K \ E
satisfying (3.26); equation (3.25) is not solvable.

3) Case A =g B: both (3.25) and (3.26) arc solvable for X, resp. Y, and
Y=-Xe€E.

From the cancellation law it follows that for-arbitrary A, B € K each of the
equations (3.25), (3.26) may have at most one solution.

Proposition 4. Let for AB/CEK, A+ B=C and0€ A. Then BC C.

Proof. Equation A+ B = C, that is UaeAa-}-B C, means a+BCCfor all
a€ A Hencefora=0,B=0+BCC. D
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In the next section we study an operator in K called “negation”, which plays
an important role for the algebraic description of the properties of the set of convex
bodies.

4. NEGATION

Substituting « = —1 in (1.2) we obtain the operator
(~1)* A={-a|a€ A}, A€K, (4.27)

called negation, which will be denoted by =A = (—1) * A or neg(A). Obviously,
=y * A) =(-1) * (7 x A) = (—7v) * A.

The following properties of negation are easily verified:

~(~A)= A, A€k, (4.28)
~(A+B) = (=A)+(=B), A, Bek, (4.29)
“-P+P=0=>P€eE<=-P=-P, (4.30)
~A=0<>A=0, AcK. (4.31)

Properties (4.28)-(4.29) mean that negation.is a dual automorphism (involution).
Property (4.30) means that a convex body P € K satisfies =P + P = 0 if and
only if P is a degenerate, in which case the negation (—) coincides with the
opposite operator (—) in the set E of degenerate (one-point) elements of K, i.e.
—~P 4+ P =0. Of course, ~A + A = 0 does not hold in K \ E, since nondegener-
ate convex bodies have no opposite elements. We see that negation isomorphically
extends the opposite from E to K.
For brevity, we shall denote for A, B €K

A-B=A+(~B)=A+(-1)*xB={a—bla€ 4, be B} (4.32)

the operation A~B is called an (outer) subtraction.

Remarks. Instead of the symbol “=” we may use “—” as it is well adopted
in the literature on interval and set-valued analysis (see, e. g., [10, 19]); however it
should be kept in mind that there is no opposite operator in K, and that A—~A # 0
for A € K\ E. Since the notation “~” is usually associated with the equality
A— A =0, to avoid confusion we write “=” instead of “~”. Using “-”, we also
 avoid confusion with the opposite in £. In mathematical morphology the outer

subtraction (4.32) is called dilatation, whereas the Minkowski subtraction is called

erosion [15].

Definition. A € K is called symmetric (with respect to the origin) if z € E,
r € A, implies —z € A.

Obviously, A € K is symmetric if and only if A = ~A. For A € K the set A~A

is called the difference body of A (see [20, p. 127]). The set of all symmetric convex
bodies is denoted by Ks, that is Ks = {4 €K | A= -A}.
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Proposition 5. For A € K we have A-A € K.

Proof. Let z € E be such that ¢ € A~A. Then, from (4.32) -z € ~(A-A) = |
(mA)~(-A) = (mA) + A = A-A, using properties (4.28), (4.29). 0

Proposition 6. The following two conditions for symmetricity of A € K are
equivalent:

1) A = A

i1) there ezxists Z € K such that A = Z-2.

Proof. 1) Let A = —A. Assume t € E and set Z = A/2 + t, where Af2 =
(1/2) ¥ A. Using A = —A, we obtain =Z = ~A/2 -t = A/2 — t. Hence Z~2 =
Z+(~Z)=(A)2+t)+(A)2-1) = A.

i) Assume that A = Z-Z for some Z € K. Then we have A = ~(Z-2) =
L+ Z=7-Z=A 0O

Definition. A € K is called t-symmetric, with center t € E, if (A-t)eKs.

In other words, a t-symmetric element is a translate by ¢ of a symmetric ele-
ment.

Proposition 7. Every t-symmetric convez body A is a translate of its nega-
tion mA. -

Proof. Let A € K be t-symmetric. We have to show that there exists P € E
such that =4 + P = A. Since A is {-symmetric, A — 1 is symmetric, that is
(A—t)=-(A—1)=-A+t. This implies =A + 2t = A, hence A is a translate by
2t of ~A; we found P=2¢t. DO

‘Remark. Let A € K be t-symmetric, i.e. (A ~t) € Ks. By Proposition 6
there exists Z € K such that A =t = Z-Z. To find an expression for Z, fix
s € E and set Z = (A —1t)/2 +5; we obtain Z = A/2+ 5', s’ € E. Thus
A—t=2-7 = A[2-A/2 = (A-A)/2. We thus have A —1 = (A-A)/2, that
is for any t-symmetric element A € K its symmetric translate by —t is (A-A)/2.

5. INNER OPERATIONS

Inner addition in K. /nner sum A +~ B is defined for (some) A, B € K by

A4~ B = nbeB (A + b): lf ~B <m Ar
Moca (B+a), if ~A<py B.

Remark. The inner sum is defined whenever one of the conditions in the right-
hand side is fulfilled. Note that =B <js A is equivalent to B <p; —A. Note also
that if both =B <3 A and ~A <p B hold, that is ~B =, A, then =B = A+1 for
some ¢ € IE. In this case it can be shown that both intersections in the right-hand
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side of the above definition produce the same result. Therefore we can replace the
second condition above by A <ps B (or A <pr —B).

Inner difference A —— B, for A, B € K, is defined by the equality A —— B
= A+ (-B) [11,12].

In the situation when (A, ~B) € Ly, resp. (A, B) € Ly, the inner addition,
resp. inner subtraction, admits simple presentation. Namely, we have

Y|, -4, If "B<; A,
A+~ B = B +y=a _ =7 (5.33)
X'-«A-{-X:Ba if =4 <z B,
Yipeyea, if B<s A,
A--B = |B+Y A 1 Sse
X|a-x=B, f A<:B.

The inner operations (5.33) and (5.34) are related by A+~ B = A -~ (—-B).
Note that A <py B does imply =A <pr —B, but does not necessarily imply
-A <pr B. Due to this fact, for some A, B € K it may happen that A 4+~ B
is defined, but A —~ B 1s not, or vice versa.

A relatlon between the inner operations and the Minkowski dlfference is given

(5.34)

by .
A+~ B = (AX(=B))U(B X (-4)),
A-"B = (AXB)U—(BX A).

Inner addition is commutative, A+~ B = B+~ A; other important property
isA-—A=0.

i

Proposition 8. Let (A, —‘B) €Ly. Then A+~ B<z A+ B and A+~ BC
A+ B. '
Proof. From (5.33) we immediately see that A +~ B is a summand of A + B.
Indeed, if B <y A, we have ~B+(A+~ B) = A, hence B~B+(A+~ B) = A+B.
If ~A <; B, then ~A+(A+~ B) = B, and hence A~A+(A+~ B) = A+ B. Since
in both cases the other summand contains 0 (indeed, A~A 5 0 and B—B 3 0), we
have A+~ B C A+ B, using Proposition 4 and A+~ B<; A+ B aswell. O

Remark. The proof can be generalized (cf. [15]) for the more general case when
either B <p A or A <y B (in which case it may happen that (A,~B) ¢ L;).
Most of the results in the sequel can be extended to this more general case.

Proposition 9. Let (A,~B) € En.. Then

A+~ B,0 f =B <
(A,~B) = { (4+ ’_)’ zf B <z 4,
(0,-(A+~ B)), i ~B>; A

Proof. From (5.33), if ~B <y A, then =B + (A +~ B) = A. Hence (A,-B)
= ("B+(A+~ B),~B) = (A+~ B,0). The case =B > A is treated analogously,
using that B >,;;, = A implies B = =A+ (A +~ B), hence ~B = A+ -(A+~ B).

20



6. THE QUASIDISTRIBUTIVE LAW

Proposition 10. Let C€ K, a € R, a > 0. Then

C?_EO!*C, lf Osaslr
C<gaxC, if a2l

Proof. Let 0 < a < 1. We have to verify that a *C' is a summand of C, that is
axC+ X = C for some X € K. Take X = (1 —a)*C. Substituting 3 =1—-a >0
in

a*xC+p+xC=(a+p)xC, af >0,
we obtain axC 4+ (1 —a)xC = (a+1—a)*C = C, showing that C >y a*C,
for « € [0,1]. Let @ > 1. We look for Y such that a x C = Y + C. Taking
=(ax—1)*C, we see that C <z a*xCfora>1. 0O

The above proposition shows that for « € (0, 1) the solution of C = axC + X
lS X = (1 — C!) *C.

Proposition 11. Let o, € R, C € K. Ifaf > 0, then (a* C,B * C) € Ly.
If af <0, then (ma*xC, BxC) € Ls.

Proof. The case a8 = 0 is obvious. Let aff > 0, say a > 3 > 0. We shall show
that the pair (a*C, 8% C) is E-comparable, and §+C <y a*C. By Proposition 10
we have that C and (a/f) * C, a/B > 1 are T-comparable with (a/g) * C > C,
that is C + X = (a/B) * C is solvable. Then fxC +Y = a * C is solvable, i.e.
a % C >g B+ C. The other subcases of af > 0 are treated similarly. The case
a3 < 0 is reduced to the previous case by setting a = —v. O

Proposition 12. Let o, BER, af <0, C € K. Then
(a+PB)*xC=a*xC+~ B+C.

Proof. Without a loss of generality we may assume that @ > 0, § < 0. Denote
—3 =+ > 0. Using (5.33), we obtain ,

Yl-y:C-!-Y:a*C» if 7 * C SE a * C;
Xlaxct(=X)=yec, If axC <gy*xC;

H

axC+~ gxC

“(y—-a)*xC, a<lw;
= (a—9)*C=(a+p3)+C.
In the proof we make use of Proposition 10. O
Denote the sign of the real number @ € R by o(a) € {+, -}, that is:

(a) = +, ifa>0,
=1 =, ifa<.

_ {(a—ﬂ*C, v < a,
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Assuming +7 = +, we can combine Proposition 12 and relation (1.13) in the
following general quasidistributive law: for every o, € R, C € K,

(a+B)*C=axC+7P) g« C. (6.35)

7. QUASILINEAR SYSTEMS OF CONVEX BODIES

As already mentioned, due to (1.3)-(1.6) the system (K, +,0) is an (additive)
a.c. monoid. This system 1s a proper semigroup (i.e. not a group itself), which
means that there exists at least one pair (A, B) such that A + X = B has no
solution for X € K. The monoid (K, +, 0) has a unique idempotent element e (such
that e + e = €), which 1s the null element (¢ = 0). For a semigroup (Q, +) with
only one idempotent element it is known that the set Qg of all-invertable elements
u € Q (i.e., such that u + v = 0 for some v) is a group (Qg,+,0,—), which is the
unique maximal subgroup of the semigroup (see, e. g., [1, Section 1.7]). Recall that
a subgroup (M, +) of a semigroup (Q, +) is called maximal (with respect to “C”)
if there is no other subgroup (M’ +) of (Q, +) such that M’ D M and M # M’.
If no doubt occurs, we shall further say “the subgroup of the monoid” instead of
“the unique maximal subgroup of the monoid”.

Using the above terminology, we can say that the system of convex bodies
(K, +,0) involves the group (E, 4, 0), which is the (maximal) subgroup of K com-
prising all invertible elements of K.

Given a semigroup (Q, +), we shall call 7 : Q@ — Q an nvolution in Q if it is
a dual automorphism, that is:

i) m(m(A)) = Afor A€ Q;
ii) 7(A+ B) = w(A) + n(B) for A,B € Q.

A proper a. c. monoid (Q, +,0) with (maximal) subgroup (Qo, +,0,—) will be
further denoted (Q, Qo,+). The subgroup (Qo, +,0,—) contains the trivial group,
and, in particular, it may happen that Qo = {0}. In (Q, Qo,+) we define negation
as follows:

Definition. Let (Q, Qo,+) be a proper a.c. monoid. An involution neg :
Q — Q is called negation in (Q, Qo, +) if it extends the operator opposite from Qg
to Q: neg(P) = —g,P for P € Qp (i.e. neg(P)+ P =10, P € Qp).

It is easily seen that neg(A) = 0 <= A = 0 for A € Q, which corresponds
o (4.31).

‘We shall further require that negation is unique (sufficient conditions for unique-
ness will be discussed elsewhere).

Definition [12]. A proper a.c. monoid (Q, Qg, +) with unique operator nega-

»

tion “neg = —” is called a quasimodule and is denoted by (Q, Qo, +, -).
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Remark. Note that a quasimodule (Q, Qo,+, ) is not a group, but it pos-
sesses the same number of basic operations as a group does: one binary “+”,
one unary “—”  and one nullary operation “0”, and the algebraic properties of
(Q, Qo, +, ™) are close to those of a group.

The relation “<g” is defined in a general semigroup in the same manner as it
is done in the semigroup (K, +), see Sections 2, 3. Inner addition “+~” and inner
subtraction “—~" in a quasimodule are partial operations defined by (5.33)-(5.34),
hence the quasidistributivity law (6.35) mentioned in the next definition makes
sense.

Definition. Multiplication by scalar * : R x @ — @, in a quasimodule
(Q, Qo,+, ™) Is a scalar operator over IR satisfying relations (1.8)-(1.10), (6.35),
and such that (=1)x A =-Aforall A € Q.

The last assumption (—1) * A = —A means that negation is a special case of
multiplication by scalar. Note also that the multiplication by integers n x A =
A+ A+ -+ A is consistent with the multiplication by (real) scalar (1.2), hence
the symbol “x¥” makes sense in expressions like 2 x A = A + A; we also have
~(nx A) = (=1)*(nx A) = (—n) x A. '

Definition. A quasimodule endowed with multiplication by scalar is called
quasilinear system (over the field R), or R-quasimodule, and is denoted by
(Q, Qo, +, R, *). | |

We borrow the notion “quasilinear” from [13], where this notion is used to
denote a similar algebraic system of convex bodies over E'| that is intervals.

If the subgroup of a quasimodule Q is Q¢ = ({0},+), then negation and
identity coincide. Due to =A = A, in a quasimodule with (maximal) subgroup 0
we have A+ B= A-Band A+~ B=A-" B. :

Example 1. The subgroup of the monoid of convex bodies is (E, +, 0), hence
the corresponding R-quasimodule is (K, E, +, R, %) (also to be further referred to
as quastlinear system of convez bodies).

Example 2. The system of symmetric elements (Ks,0,+) is a quasimod-
ule with subgroup ({0},+). The quasilinear system of symmetric elements is
(Ks,0,4+,R, *). Due to =B = (—1)* B = B it is easy to check that a* B = |a|* B
for B € Ks. Using (1.2), this implies a * B = {az | z € B} = {|a|z | z € B}.

Example 3 {17]. Another instructive example of a quasilinear system with
(maximal) subgroup 0 is the system (R*, 0,4, R, x), where (R, +) is the semigroup
of nonnegative reals with subgroup ({0},4). The system (R*,0,+,R, *) can be
considered as a subsystem of (Ks,0,+, R, *) whenever Kg is replaced by a subset
of symmetric bodies of the form Ky = r* B, r € R*, with B € Kg, B # 0,
fixed; then K = R¥. The multiplication by scalar » : R x RY — R satisfies
a* A = |a|* A. In this system we have A+~ B = A—~ B = |A— B|, where |A — B|
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is defined in R* by {A— B, if B < A; B— A, if A < B}. By definition, A — B for
B < A is the solution of B + X = A.

8. THE Q-LINEAR SYSTEM

Here we shall further stay within the framework of abstract algebraic systems.
This approach allows us to summarize several important special cases, such as the
ones considered in Examples 1-3. -

Recall that every quasimodule (Q, Qo, +, ™) is an a. c. monoid, and, according
to the extension method mentioned in the introduction, the quasimodule induces
an extension group with supporting set G = (@ x Q)/p. The extension group has
opposite opp(A, B) = (B, A), which will be denoted symbolically by “~g” or just
“«_»  Negation (neg = —) in the quasimodule induces a corresponding operator
in the extension group (G,+) by means of neg(4, B) = (neg(A), neg(B)), A,B €
Q, which will be again called negation (in G) and denoted symbolically by“ 7
—(A, B) = (A, ~B). The set of invertable elements Qy of the monoid is isomorphic
to a subset of G of the form Gy = {(P,0) | P € Qo}, which is subgroup of the
extension group: (Go,+,0,—) = (Qo,+,0,—). We shall incorporate the important
elements “Go”, “=”, “~” (and, of course, “+”) in the notation of the extension
group induced by the quasimodule (Q, Qo, +, ), writing thus (G, Go, +, —, ).

Let us first discuss in some detail the automorphisms in the extension group
(G,Go,+,—,). Denote the identity in G by “id” and the operator, which is a
composmon “0” of negation and opposite, by dual: dual = neg o opp, that is
dual(a) =neg(opp(a)) for a € G; the operator dual(a) is called dualization (or
conjugation). Since negation and opposite are involutions, dualization is also invo-
lution. Any two of the four involutions id, neg, opp and dual in G are composed to
each other according to Table 1.

TABLE 1
Composition table for the involutions in ¢
[(o [ id [ neg [ opp [ dual |
id id neg | opp { dual

neg neg id dual | opp
opp opp | dual id neg
dual || dual | opp | neg id

Let (G,Go,+,) with G = (Q x Q)/p and Go = Qp be the extension group
generated by the quasimodule (Q,Qq,+,—), and let 7 be any of the operators
opposite or negation in G. As already mentioned, 7 is an involution in the sense
that:

Cl1) n(m(a)) = a for a € G;
C2) w(a+ b) = n(a) + w(b) for a,b € Q;
C3) m(a) =0<=a=0fora€g.
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It is important to note that the both involutions “opp” and “neg” extend the
operator “opp” from Qg into G, that is:

C4) 7(p) = —@,(p), i.e. m(p) +p =0, for p € Go = Qo.

Since both opposite and negation satisfy conditions C1)-C4), it is interesting
to formulate characteristic conditions for the distinction of these two operators.
One such distinctive property is that opp(p) + p = 0 for every p € G, whereas
neg(p) +p # 0 for p € G\ Go. We shall next consider another distinctive property.

The class Gy of E-comparable elements of G is

G= = {(U,0)|U € Q}{ J{(0,V) |V € Q}. (8.36)
The function type (or direction) of an element of Gy is defined by
+, ifB< A,
7(4,B) = { . ifA<. B. (8.37)

The form of presentation (U,0), resp. (0, V), appearing in (8.36) is similar to the
form used for real numbers; indeed, we may write (U; +) for (U,0) and (V; —) for
(0, V) as we do with positive, resp. negative, numbers.

An element (A, B) € Gy, is proper if (A, B) = (U, 0) for some U € Q. According
to the extension method the element W € Q is identified with the proper element
(W,0) € Gz. Improper X-comparable elements are of the form (A, B) = (0,V),
V € @\ Qo. A special case of proper elements are the degenerate (U,0) with
U € Qqo. Using the notation (8.37), a € Gy, is proper-if 7(a) = +, and improper
if 7(a) = —. According to Proposition 9, using inner addition we can present any
Y-comparable element of G in the “(z)-form (U,0) or (0, V), resp. (4; +).

If an element a € Gy is proper, then neg(a) is also proper, since a = (4, 0)
implies neg(A,0) = (neg(A),0) for A,B € Q. If an element b is improper, then
neg(b) = neg(0, B) = (0,neg(B)), showing that negation preserves the type, that
is:

C5) r(neg(a)) = 7(a) for a € Gy..

On the other side, for-a nondegenerate a:
C6) r(opp(a)) = —7(a) for a € Gy,
where —7 is defined by —— = +, —4 = —.

The operators identity “id” and “dual” satisfy Cl) C3) and, instead of C4),
the condition:

C7) w(p) = p for p € Go.

However, unlike identity, dualization changes the type of a Y-comparable ele-
ment. We summarize the above observations as follows: '

Proposition 13. The quasimodule (Q, Qo,+,~) generates (by means of the
ezxtension method) a system (G,Go,+,—, ) such that:
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1) ¢ = (@ x Q)/p; (Go,+,0,—-) = (Qo,+,0,—); the opposite in G is:
opp(A, B) = —(A,B) = (B,A), A,B€ Q.

2) Negation in G is given by neg(A, B) = (neg(A),neg(B)), A, B € Q; dualiza-
tion, which is a composition of negation and opposite, is: dual(A, B) = neg(B, A) =
(neg(B), neg(A)), A, B € Q. Opposite and negation coincide on Go and dual co-
incides on Go with identity. Opposite and dualization change the type of the X-
comparable elements, whereas negation does not influence the type. The four au-
tomorphisms on G: identily, opposite, negation and dualization, obey composition
rules according to Table 1.

The following symbolic notation will be used: for a € G we write dual(a) = a—,
a = ay; then a, is either a or dual(a) according to the value of o € {+,-}. In
such notation we have for U,V € Q: (U, V). = (=V,=U).

The multiplication by scalar “#” in the quasilinear system (Q, Qo, +, R, *) 1n-
duces a corresponding multiplication in the extension group (G,Go,+,—,™) by
means of the relation

v*(A,B)=(y*A,7*B), A,B€ Q. (8.38)

Applying the extension method to the qugsilinear system (Q, Qo, +, R, *) (that
is, extending the multiplication by scalar), we obtain a new system with basic
© properties given in the next proposition; below we assume «, 3,7 € R, q, b,ce G

[12].

Proposition 14. Let (Q, Qo,+,R, %) be a quasilinear system, (G,Go, +,—, ™)
be the extension group according to Proposition 13 , and multiplication by scalar
“” be defined in G by (8.38). Then:

1) ma.= (—1) *a;

i) ax(B*c)=(af) xc;

i) y*x(a+bd) =y*xa+yx*b;

iv) 1xa=a;

V) (@ + B) * Co(atp) = @ * Ca(a) + B * Co(s);

vi) (=1)*a+a =0 for a € Go.

Proof. Relations i)-iv) and vi) are obvious. To prove v), note that it is equiv-
alent to v') (a + ) * ¢ = (@ x ¢ + B * C5(a)o(8) Jo(a)o(at+p): WE shall prove v) in this

latter form. Substitute ¢ = (U, V) € G with U,V € Q. The right-hand side of v') is
r=(ax(U,V)+B*(U,V)s(a)o(s))s(a)o(a+p)-

If o(a)o(8) = +, using that o(a)o(a + B) = + as well, we see that r is identical
to the left-hand side

l:(a+ﬂ)*(U,V):((a+ﬂ)*U, (C!+,3)*V).
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Consider now the case o(a)o(8) = —. The right-hand side becomes

r = (ax(UV)+8x*(, V)—)a(a)a(a+ﬁ)

= (ax(U,V)+px(2V, “"U))a(a)o(a+ﬂ)

= ((a*xU,ax V)4 ((=8) * V,(=B) * U)s(a)o(a+s)
(@xU+(=B)*V, axV +(=B) * U)s(a)o(a+5):

We must now consider a number of subcases. Consider, e.g., the subcase
o(e) =+, 0(8) = —, o(a+ ) = + (in this subcase we have o > —3 > 0). Adding
the zero term (=) * (U + V,U + V) = (0,0) to the left-hand side and using the
quasidistributive law (6.35), we obtain

I = (@+8)*x(UV)+(-B8)*«U+V,U+YV)
= ((a+B8)*U,(a+B)* V) +((=B) U+ (=) * V,(=B) + U + (-B) * V)
= (@+B)xU+(=B)xU+(=B)*V, (a+B) + V) + (=) *V + (=) V)
= (a*xU+(-B)*«V, axV)+(=B)*xU)=r.

The rest of the cases are treated analogously. O

Relation v) (or v')) will be called g-distributive law. The g-distributive law
can be also written in the form (a + f)c = acy + Be, with A = o(a)o(a + 3),
Q= 0’(,3)0'((! +ﬁ)

Definition. The system obtained in Proposition 14 will be further denoted
(G,Go,+,—, R, %) and called g-linear system.

Proposition 14 is a generalization of Radstrom’s embedding theorem [16] in two
directions: a) no restrictions for the signs of the scalar multipliers in the second
distributive law (that is in the quasi- and g¢-distributive laws) are required (lead-
ing to embedding of cones in Radstrom case), and b) our theorem is formulated
for abstract algebraic systems, comprising the system of convex bodies as special
case. Clearly, (8.38) isomorphically extends multiplication by scalar from Q into
G: briefly, Proposition 14 says that a quasilinear system can be isomorphically em-
bedded into a g-linear system. Thus the proposition answers fully the questions
posed in the introduction.

Proposition 15. Let (G,Go,+, —, R, %) be a g-linear system and the operation
“7 R X G — G be defined by ‘

Q- C=Q*Cha), *ER, cEQG. (8.39)

Then (G, +,R,-) ts a linear system.

Proof. Let us check that “-” satisfies the axioms for linear multiplication.
1. Let us prove that o - (3 - d) = (@B) - d. Substitute ¢ = d,(g) in the relation
ax (B *c) = (af) * ¢ to obtain a * (8 * dy(g)) = (af) ¥ dy(p). Using (8.39), we
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have a * (8 - d) = (af) * dy(g). “Dualizing” by o(a), we obtain a x (8 - d)s(a) =
(Qﬁ) * da(ﬂ)o(a) = (aﬂ) * da(ﬁa): or a - (ﬂ . d) = (aﬂ) -d,foralld € G, a,f €R.

2. To prove the relation v-(a+b) = v-a+7-b, substitute a = cy(4), b = do(y)
iny*(a+b) =vy*a+y*b. Weobtain v * (cs(y) + do(y)) = 7 * Co(y) + 7 * dg(y), OF
v *(c+ d)o(y) = 7 *Co(y) + 7 *do(). This implies that y - (c+d)=v ¢c+v-dfor
alle,d€e G,y €eR.

The relations 1 -a=a, (a+ ) -¢c=a-c+ B -cand (=1)-a+a =0 can be
proved similarly. O '

“©»

We proved that the system (G, +, R, ) is a linear system (and, hence, is a
linear multiplication by scalar). The operation “.” is involved in the g-linear system
—— therefore the latter can be written in the form (G, Go, +, R, *, ).

9. CONCLUSIONS

Algebraic properties of convex bodies with respect to Minkowski operations
for addition and multiplication by real scalar are studied. To this end two new
operations, called inner addition, resp. inner subtraction, are introduced, and a
new analogue of the second distributive law, called quasidistributive law, is proved.
With the latter the system of convex bodies becomes a quasilinear system. A
quasilinear system of convex bodies can be isomorphically embedded into a g-linear
system, having group properties with respect to addition. The quasidistributive
law induces in the g-linear system a corresponding distributivity relation, called
g-distributive law. A g-linear system has much algebraic structure and is rather
close to a linear system and differs from the latter by:

i) existence of two new automorphic operators — “negation” and “dualization”
— in addition to the familiar automorphism “opposite” (and, of course, identity);

ii) the distributivity relation (g-distributive law) resembles the usual linear
distributive law with the difference that the operator dualization is involved.

From our study it becomes clear that quasilinear and g-linear systems summa-
rize some of the most characteristic algebraic properties of convex bodies. However,
the following methodological question remains open: Which are the algebraic prop-
erties of the abstract systems corresponding to the notion of “convexity”? In our
abstract study we circumvent this question by stepping directly on the fundament
of abelian cancellative monoids — algebraic systems comprising well-known prop-
erties of convex bodies. Another approach could be to take into account that the
set of convex bodies is a power set of certain type over a vector (or Euclidean)
space (or lattice). For the latter approach results from [21] may be used, where the
concept of convexity has been considered in abstract algebraic systems, which are
more general than semigroups — the so-called associative spaces. Another similar
approach offers the mathematical morphology (see, e. g., [15]), where vector lattices
are used as fundament.
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