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A POLYNOMIAL PROBLEM

PAVEL G. TODOROV

We show that the roots of the equation (5) with respect to z are among the roots of the
equation (6). Therefore the roots of the given equation (5) are determined by means
of a check of the roots of the resolvent equation (6). Some examples and applications
are given.
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EXPOSITION OF THE PROBLEM

First we shall prove the following

Theofem 1. Let
p = P(z2) = apz" +ap-12"" '+ daz4+ag, ap #0, n>1,

and
Q(2) = bz™ + bp_12™ M 4 b1z by, b #0, m> 1,
and let . .
¢=Q(2) = bmz™ +bmo1 2™ 4+ b1 Z + by,
and

_ QEQ(2)=5m2m+5m_lz"“l+---+51z+50.
Then all roots of the equation

(1)
(2)
(3)
(4)

(5)
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with respect to z are roots of the determinant (resolvent) equation

( bm bm-l bl bo—p 0 0 0
n ) 0 bm b2 bl bo—p 0 0
0 L T |
| 0 0 b bm—1 by bo—p (6)
(1A, Qn-1 a; ap—q 0 0 0
m 0 an as a a—q 0 0
TOWS | oottt i i e i a e s i aaarr s
.| 0 0 ... AQpn Apn -1 ... @ ao—4q

as well, but, conversely, not always all roots of the equation (6) are roots of the
equation (5) as well, where the determinant is of order n + m.

The determinant equation (6) has:

(i) ezactly n? roots if n > m,

(ii) ezactly n? = m? roots if n = m and |apm| # |bm|, and less than n? = m?
roots if n = m and |am| = |bm|, both under the condition that all the equations

d, = be” %, 1 <s<m, ap =bo = iroei%, (7)

where ¢ = Argam, + Arg b, (mod 27), ro > 0 and the signs + are taken singly,
cannot erist stmultaneously, and
(iii) ezactly m? roots if n < m.

Proof. Let us examine the equations
bnC™ 4 b1 (™ 4+ b1 +bo—p =0 (8)

and
anC" +an_1(" "+ @+ - =0 (9)

According to the classical Sylvester method of elimination, the two equations (8)
and (9) have a common root ¢ only if z is a root of the eliminating equation (6), and
conversely (see the Sylvester method, for example, in Dickson’s book [1, p. 164]).
Hence, if a common root ¢ of the two equations (8) and (9) is equal to z, where 2
is a root of the resolvent (determinant) equation (6), then z is a root of the given
equation (5) as well, taking into account the same multiplicity of z as a root of the
determinant (resolvent) equation (6). If a common root { of the two equations (8)
and (9) is not equal to z, where z is a root of the determinant equation (6), then
z is not a root of the given equation (5) as well. |

If n = m, the condition in (ii) (see (7)) ensures that the equation (6) is not an
identity with respect to z. Indeed, for n = m, the determinant in (6) is identically
equal to zero with respect to z only if the two equations (8) and (9) are reduced to
one equation, i.e. keeping in mind (1)-(4), if we have the identity

P-i=XMg-p) ((=2) (10)
for some complex (or real) number A # 0 which does not depend on z and {. Thus
from (10) we obtain the equations

as; = Aby, 1<s<m, (11)
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and the identity

ap — q = A(bo — p). (12)
Further, from (12) it follows that
53 = Aaa: 1 <s<m, (13)
and .
bo - (_10 - A(ao - bo) (14)
Now, from (11) and (13) for s = m, we obtain [a,| = |b,,| and hence |A] =1, i.e.
A=eT, (15)

where ¢ = Argam, + Arg by (mod 27). Therefore from (11) and (15) we get the
first equations in (7). Finally, if we set ap — by = r0e'*, 79 > 0, a being real (a is
arbitrary if ro = 0), from (14) and (15) we find 2o = 7+ +2km, k = 0,+1, 42, . .,
if 7o > 0, i.e. we obtain the second equations in (7).

Now we shall determine the degree of the resolvent equation (6) with respect
to z. For the solution of this problem we shall use the fact that each summand in
(6) consists of a product of elements of different columns and rows.

(1) Let n > m. Let k be a non-negative integer such that 0 < k < m. If we take
k times the binomial ag — ¢ and n — k times the binomial by — p, then we obtain the
expression (bg — p)*~¥(@p — )* in which the highest degree of z is n(n — k) + mk.
But n(n — k) + mk < n? for the considered n, m and k with equality sign only for
k = 0. Thus we proved that the determinant development of (6) includes only one
summand of the form (=1)"™ay'(bop — p)” (the sign is (—=1)"™ since the number
of the inversions of the permutation of the columns in order m 4+ 1, m+ 2, ...,
m+n, 1,2, ..., mis nm), i.e. the resolvent equation (6) is exactly of degree n?
with respect to z.

(i1) Let » = m and the equations (7) not exist simultaneously. Then if we take
k times (0 < k < m) the binomial ao — § and m — k times the binomial by — p,
we obtain the expression (bg — p)™~*(a@y — ¢)* in which the highest degree of z is
m(m — k) +mk = m?. Hence the determinant development of (6) contains the sum

m

> D (=1)"™*b} (a0 - g)*apm* (bo — p)™ ¥, (16)

k=0 k
where the number of the summands in the inner sum is equal to the number of -
the combinations of m elements of the class k, and vy, is equal to the number
of the inversions of the columns to which the considered non-zero elements of the
determinant in (6) belong. Now we shall determine the coefficient of z™ and the
exponent vy in (16) with the help of the following method: From (1)-(4) we obtain
the limit equations

. do—q¢ -
zl_x’r?o zm = ~bm (17)
and ,
. o—p
zll»nt;lo gm0 (18)
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From (16)—(18) it follows that the coefficient of 2™ is (=1)™ Ao (bm, am), where
Ao (bm,am) = D (=1)"*bm[** |am]*™ . (19)
k=0 k

On the other hand, we can determine directly the coefficient of 2™ from (6). If we
take out a factor z™ of each one of the last m columns of the determinant in (6)

and set z — 0o, then by means of (17)-(18) we obtain that the coefficient of ™
is (=1)"Agm(bm,am), where

by, ..., b
AZm(bm;am)'E A2m (d (_111)
(bm bm_l P bl am 0 0 ‘. O
m 4 0 bm ... b 0 am 0 ... O
TOWS || i it i e e st it a e sans
_ \{ 0 0 by O 0 0 Am
= (| @m Am—1 . ai Em 0o 0 ... 0} (20)
m< 0 an ... @ 0 bn 0 ... 0
rows || e i
(| O 0 . Qe 0 0O 0 ... bn

and the determinant is of order 2m. Now we develop the determinant (20) with
respect to the first column and again we develop the obtained two subdeterminants
with respect to the m-th columns, respectively. Thus we obtain the recurrence

relation

O o) B U S PO il B
for m > 2, where |
Az(?m)z f’m om = [bm|? — lam|*. (22)
m @m bm

From (21)-(22), by induction on m, we get the formula
A2m(bm)am) - (|bm|2 |aml2)m (23)
for m > 1, keeping in mind the notatlons (20). Hence the resolvent equation (6)

for n = m is exactly of degree m? if |a;,| # |bm|, and of degree less than m? if
lam| = |bm| Further we compare (19) with the binomial expansion of (23) This

yields the formula
Umk = m — k. (24)
By means of the formula (24) we find that the part (16) of the development of the

determinant (6) for n = m has the form
m

b (@0 — §) = @m(bo — )™ = |bm@o — @mbo+ Y _(@mas — bmbs)z*| ,  (25)
. s=0
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keeping in mind (1)-(4). Finally, from (25) for s = m again our assertion for the
degree becomes evident.

(iii) Let n < m. Then we interchange the roles of n and m, i.e. we examine the
case m > n as in point (i). Hence the resolvent equation (6) is exactly of degree
m? with respect to z.

This completes the proof of Theorem 1.

Now we shall examine the equation (5) for n = m under the conditions (7). In
this case from (5) and (7), keeping in mind (1)-(4), we obtain the corresponding
two equations

m m
-Zb,f‘ = e'¥ ZE,z’ + iroe‘g, (26) -
s=1 s=1
which coincide with their conjugate equations
m m

. —i s . %
b;2° = e ""E bz’ Firge™'?2,

s=1 s=1

respectively, if the last equations are multiplied by e'%.

Theorem 2. The two equations (26) are indeterminate, i.c. they have infinite-
ly many roots z.

Proof. We set '
bs - rselﬂ., 1 S S S ml (27)

where ry > 0 (rm > 0), B, are real (8, is arbitrary if the corresponding r, = 0),

and .
z = pe'Y, (28)

where p > 0, % is real (3 is arbitrary if p = 0). Then by means of (27) and (28)
the two equations (26) become

e m
zpsrsei(ﬂx_-ﬂl’) — Zpsrsei((p—ﬂ.-{'st[l) :t iroetg’

s=1 s=1

which, after multiplication by e"%, takes the form
m
: ¥
2 s - = = 0.
;p r,sm(sz/) ﬁ,+2):i:r0 0 (29)_

The equations (29) are indeterminate with respect to p and ¥, depending on rg, ¢,
ry and Bs (1 < s < m).
This completes the proof of Theorem 2.

EXAMPLES AND APPLICATIONS

1. In particular,if m = 1,0, = 1,60 = 0(g = Q(z) = 2z) and n > 1 (p = P(2)),
the equation (5) is reduced to the equation

z = P(2), (30)
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keeping in mind (1). According to (6), the resolvent equation of (30) is the equation

Dpii(@n,@n-1,...,a1,80— 2) =
1 —p 0o ... 0 0
n 1 —p 0 ... 0 O
= rows )| SUTRRT =0, (31)
0 0 0 1 —p
rolw{&n an—l al 50—2

where the determinant is of order n + 1. If we develop the determinant in (31) by
the first column, then we obtain the recurrence relation

Dn+1(an;an-—l; ‘ ..,C-ll,ao - Z) = Dn((_ln_l,(_ln_z, - .,&1,&0 - Z) + Elnpn (32)

for n > 2, where

Dg(fil , a9 — Z) = =ag— z+ap. ‘ (33)

a ag—=z

From (32) and (33) by induction on n we get the resolvent equation (31) of the
equation (30) in the form

anp” +an1p" "+ ap+ap—2z=0, (34)

keeping in mind (1). We shall note that the equation (34) follows directly from (30)
with the help of the conjugate equation z = P(z) as well. If n > 1, the resolvent
equation (34) is of degree n? and hence the given equation (30) has at most n?
roots determined by (34). If n = 1, the resolvent equation (34) (p = a1z + ap) is

(|01|2 - 1) z+ajag+ap =0, ay # 0. (35)

Thus: :
(I) If |a;| # 1, from (35) it follows that the equation (30) (n = 1) has only one
root which is ‘
_ @map+ap
T JaP-17

(II) If |a;| = 1, i.e. a; = €'?,  is real, the resolvent equation (35) is reduced

to
0.z 4+ e *¥ag +ag = 0. (36)

Now:

(I}) If e™*Pag + ap # 0, i.e. ag # :l:iroe‘%, ro > 0, the resolvent equation
(36), and hence the given equation (30) for n = 1 and a; = e'?, i.e. the equation
Z = €'z + ap, has not a root;

(I13) If e=*ag +ap = 0, i.e. ag = :Eiroeig, ro > 0, the resolvent equation (36)
1s the 1dentity

0.z4+0=0.
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This is so, since for m = 1 the two equations (7) exist simultaneously (b; = 1,
bo =0, @ = e™*%, ag = :}:iroeig). In this case the given equation (30) (n = 1)
yields the two equations
F=eYztirge'?, | (37)
which coincide with their conjugate equations
z=e Yz F iroe"'%,
respectively, if the last equations are multiplied by €. If we set z = pe'¥, p > 0,

i€

¥ is real (¢ is arbitrary if p = 0), then from (37), after multiplication by e™*2, we

obtain the corresponding two indeterminate equations
2psin (¢+ g) +re =0, |
which yield the unknown values p and ¥, depending on ry and .
2. In particular, if m = 2, b, = 1, b, is arbitrary, by = 0 (§ = Q(T) = 22 +I_>1z)

and n = 2 (p = P(2) = az2% 4+ a1z + ao, az # 0), the equation (5) is reduced to the
equation

22+ b2 = azz® + ayz + a. (38)

For this case the equations (7) (m = 2) are
dy=e % a; =be ¥, ap= :1:1'7'()8"52"l . (39)
with rg > 0 and an arbitrary real ¢. From (38) and (39) we obtain the two equations
2 4bhz=eY22 + bz iroei‘g, (40)

which coincide with their conjugate equations
224 biz=e"%2 4 e Vi F iroe_‘%,
respectively, if the last equations are multiplied by e'?. If we set z = pe'¥, p > 0,

¥ is real (3 is arbitrary if p = 0), then from (40), after multiplication by e"ig, we
obtain the corresponding two indeterminate equations

2p% sin (2¢ + g) + 2pry sin (1/; - B+ g) +7ro=0,

which yield the unknown values p and 1, depending on ro, ¢, r; = |b1| and By =
Argby (B is arbitrary if r; = 0). |

In the general case, if the equations (39) do not exist simultaneously, then
according to (6) (m = n = 2) the resolvent equation of (38) is the equation

(@0 — ¢ + @2p)” + (azbs — @) [by (a0 ~ §) + a1p] = 0, (41)
where i
ap— q+ (_Izp = (|02|2 — 1) 22 -4 (al(_lz - bl) Z 4+ apas + ag (42)
and |
by(ap— q)+a1p= (araz — by) 22 + (|a1|2 - Ibllz) z 4 agdy + agh;. (43)
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If |az| # 1, then from (41)-(43) it follows that the resolvent equation (41) is of
degree 4 and hence the given equation (38) has at most four roots z. If |az| = 1,
then from (41)-(43) it follows that the resolvent equation (41) is of degree at most
2 and hence the given equation (38) has at most two roots z.

3. In particular, foras =0,0<s<n-1,a, #0,b, =0,0< s <m -1,

bn # 0, n > m > 1 and lam| # lbml, if n = m (p = P(2) = an2", § = Q(2)
b,nz™), from (5) and (6) we obtain the equation
bn(™ = an2" (¢ =2) (44)
and its resolvent equation
Enm(an;bm,z) =
(b 0 ... 0 —ap2" 0 0o ... 0
n ) 0 bm 0 0 —a,2z" 0 0
rows || .
_ 00 bm 0 0 0 ... =—apz"|
- lan 0 ... 0 —bmz™ o o0 ... o |79 (45)
m | 0 @ ... 0 0  =bmz™ 0 ... 0
rows V1 rrreree i )
|0 0 ... an 0 0 0 ... =bnpz™

where the determinant Enpn(an,bm,2) is of order n + m. The equation (45) is a
result of the elimination of ¢ from the equation (44) and the conjugate equation

anC™ = bmz™ (¢ = 2). (46)
Now we can eliminate ¢ by means of another method. Namely, let

d=(n,m) (1<d<m) (47)
denote the greatest common divisor of the numbers n and m, 1.e.

n=mn;d and m=md, (48)

where ny (1 < n; < n)and m; (1 < m; < m) are the corresponding quotients which
are relatively prime positive integers, i.e. their greatest common divisor (n;, my) =
1. Since the product nym;d is the least common multiple of the numbers n and m,
from (44), (46) and (48) we obtain the equations

n,
C"""“’=(“—") e (49)

bm
and - < m
¢mmd = (l;—'"-) 2mid, (50)
n
From (49) we obtain d equations
d n
. 2 1
(M — k™ (g;'l) , k=1,...,d, (51)
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where .
e=¢e'd (52)

and the radical is taken arbitrarily. Hence from (50)-(52) we obtain d equations of

the form
an \"' 24 b\ m2a
(m) o ‘(z-::) = =0, (53)

which yield all roots z of the equation (44). Thus from (53) and (48) we get the

resolvent equation
n - m d '
d p3 d 2
[(:—:) zd — (2—':) zT] =0 (54)

of the equation (44), keeping in mind the multiplicity of the roots z, where d is
given by (47). Further, from the comparison of the equivalent equations (45) and
(54) it follows that

m 112

Enm(an)bmsz) = Hnm (ar?ar?-z? —b

Jas

m m2 d
X3 zT> , (55)

where pnm 1s a factor which does not depend on z. Now we shall determine pnp,.
From (55) we obtain

Eﬂm(an:bm:z) —_ n m
Sm? o = (- ) Pnmbp, b (56)
forn >m > 1, and
Emm a 7b y 2 .
(z::a m 2) = HKmm (laml2 - |bm|2)m (57)
2=0

for n = m > 1, keeping in mind that d = (m, m) = m. On the other hand, from
(45) we obtain

| - ansbm,z min im .
(Zmz ) o = (_1) bmbm (58)
forn>m>1, and
Emm(am,bm, 2 " m
(zm’ ) 0 =(-1) (lbm|2 - |am|2) (59)

for n = m > 1, keeping in mind (20) (fora, = b, = 0,1 <s<m—1,if m > 2)
and (23). If we compare (56) with (58) and (57) with (59), we obtain

pom = (-1)™7%, n>m>1 (60)
Thus from (55) and (60) we get the formula

Enm(@n,bm,2) = (-1)"¢ (a,?&,?-zT —babm zT) (61)
for the value of the determinant in (45) for n > m > 1 and d given by (47).
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In particular, forn = rm, r =1,2,... (m 2 1) we have d = (rm,m) = m and
hence the formula (61) is reduced to the formula

Erm,m(arm;bm) Z) = (a:maf‘mzrzm - b:nl;mzm) . (62)

In particular, from (44) forn =m > 1 and (62) for r = 1 it follows that all
roots z of the equation

bnz™ = amz™, lam|? - |bm|? # 0, (63)
are represented by the multiple root z = 0 of order m? of the resolvent equation
(Jam|? = [bm]?)™ 2™ = 0. (64)

The resolvent equation (64) can be directly obtained if we determine Z from
(63), which yields
. m
:Z:ze“.%f’l 2’3, k=01,...,m—1,
bm
for any value of the radical, and set these values of 7 in the conjugate equation of
(63), namely in

bmz™ = amz.
Thus we obtain m equations of the form
| (laml? = [bm[?) 2™ = 0
which, when multiplied, yield (64).

OTHER EXAMPLES

The next simple cases illustrate the application of 'exampie 1.

(A) Consider the equation
zZ=2z. (65)
The conjugate equation of (65) is z = z and hence the resolvent equation is the
identity z = 2, i.e. the equation
0.z =0. (66)
The solutions of (66) are all complex numbers, but the solutions of (65) are only
all real numbers, because the root { = z of the equation { — 2z = 0 is equal to z if
and only if z is a real number. This result is in accordance with Theorem 2 and
example 1, item (II2), for ¢ = 0 and ro = 0.

(B) Consider the equation

= z%. | (67)
The equation (67) and its conjugate equation form the two equations
(-22=0, (*-z=0. (68)

30



From (6), or directly from (68), we obtain the resolvent equation
z2(z3-1) = 0. (69)

All solutions z = 0, 1, ¢’ & €t T of (69) are roots of (67), because for these z the
corresponding common root ¢ of the two equations (68) is equal to the conjugate
value Zz, respectively.

(C) Consider the equation

I=2+z. (70)
The equation (70) and its conjugate equation form the two equations
(~(*+2)=0, (+(-z=0. (1)
From (6), or directly from (71) we obtain the resolvent equatlon
-1
0=(*+23+22==2 —5 22 £ 1, (72)
with the roots
iZ L2 -4 ;5w

2112:3 = 0) 24,5 - iiﬁ, 26 —_— e 3 27 :

'3, zz=e€'3, zg=e€'3, (73)

For the values z = 2, k = 1, 2, 3, 4, 5, in (73), the common roots ¢ of the two
equations (71) are equal to { = Zx, k = 1, 2, 3, 4, 5, respectively. Hence the roots
z1,2,3 (a triple root) and z45 of (72) are roots of (70) as well. For the values z = z,
k=26,7,8,9,in (73), the two equations (71) take the forms

(—27698=0, (*+(—2780=0, (74)

respectively. The common roots ¢ of the two equations (74) are equal to { =
276,98 # 26,7,8,9, respectively. Hence the roots z6,7,8,9 of the resolvent equation
(72) are not roots of the given equation (70). Thus all roots of (70) are only the
roots 21,2’3,4,5 in (73)

(D) Consider the equation

z=2z% ' (75)
The equation (75) and its conjugate equations form the two equations
¢-21=0, ¢t —~z2=0. (76)
From (6), or directly from (76), we obtain the resolvent equation
z(z!% = 1) = 0. (77)
But only the solutions '
2 (4T 6 -8

z2=0,1, €%, ¢35, ¢es ¢
of (77) are the unique solutions of (75), because only for these z the correspond-
ing common root ¢ of the two equations (76) is equal to the conjugate value z,
respectively.
The examples (B)—(D) are in accordance with Theorem 1.
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