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The aim of this paper is to present a two-dimensional model of heat-transfer and trans-
port processes in a glass melting furnace and to use this model for investigation of
specifical temperature regimes for different heat flows as well as for the different effec-
tive thermal conductivity functions. The mathematical model is elaborated on the base
of the real flat glass furnace working in Diamond Ltd in Razgrad. The appropriate
numerical methods and their performance are discussed as well. '
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1. INTRODUCTION

Processes taking place in a glass melting furnace producing flat glass are very
complicated. In fact, there are five relatively separated physic-chemical processes —
silication, refining fusion, degassing, homogenization and cooling, which are closely
interconnected at very high temperature and practically occur simultaneously.

The outlet product of the furnace is a glass melt suitable for drawing. Its
basic characteristic is its quality, defined by thermal and chemical homogeneity in
the drawing volume and in time. Therefore it is very important for the quality of
the flat glass that the temperature regime in the furnace be within given limits.
Hence the automatic control of glass’ quality is directly connected with the control
of temperature distribution within the furnace.
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The measurement of the temperature of the glass melt is very difficult however.
The glass surface temperature is measured using pyrometers and the temperature of
melt near the walls and the bottom is usually measured using very expensive special
thermocouples. As a matter of fact, the temperature within the glass melt cannot
be measured properly and it is practically impossible to have reliable information
about it. Information for the temperature distribution in the glass melt can be
obtained by mathematical modeling of heat transfer and transport phenomena
taking place in the furnace. This information can be used for automatic control of
the temperature regime in the furnace and for studying the energeting behaviour
of the furnace.

The aim of this paper is to present a two-dimensional model of heat-transfer
and transport processes in the furnace and to use this model for investigation of the
temperature regime in the furnace for different heat flows as well as for the different
effective thermal conductivity functions. The mathematical model is elaborated on
the base of the real flat glass furnace working in Diamond Ltd in Razgrad. The
appropriate numerical methods and their performance are discussed as well.

2. FORMULATION OF THE MATHEMATICAL PROBLEM

2.1. SCHEME OF THE FURNACE

The glass melting furnace is divided into two parts — a burning chamber and
a tank. In this paper we will examine only the tank and will take into account the
heat flow from the burning chamber to the glass surface as a boundary conditions
on the melt glass surface. .

The scheme of the tank and its geometric parameters and coordinate system
are given in Fig. 1. The tank consists of two parts — a melting zone (I) and a
cooling zone (II). The area HI (Fig. 1) is covered by a batch wedge with a small
opening angle. Its length is also given in Fig. 1. The batch material is feed from
the doghouse into the furnace with a given temperature.

The side below the batch wedge has a constant temperature which equals the
melting temperature (Table 2). The melt batch enters the tank in this place with
a given constant velocity vg. All the heat flow towards the batch in the zone ITH
is spent for its melting. That is why the heat flow to the glass melt in this zone
in fact is equal to zero. In the zone HG the glass melt is heated to the needed
temperature for the chemical processes — silication, refining fusion, degassing and
homogenization temperature. The glass melt is slightly cooled to the drawing
temperature in the cooling zone (II). The homogeneous glass melt is drawn from
four drawing machines. The place of the drawing machines is in the end of the
cooling zone (area CK in Fig. 1).

2.2. BASIC EQUATIONS

On the base of physical properties of the melt we assume that the glass melt 1s
incompressible Newtonian fluid and the process is steady [1, 2]. The mathematical
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Fig. 1. Scheme of the glass melting furnace and.coordinate system

model of the motion and the thermal behaviour of the glass melt are described by
the mass, momentum and energy conservation equations that can be expressed as

dive = 0,
p(v - VYo =-VP -V 1+ pp(T —-Tp)g, (1)
pva * VT = V * Keﬁ'VT,

where p is the glass density, v(u,v) — the velocity vector with its rectangular co-
ordinates, P — the pressure, 7 — the viscous stress tensor, § — the volumetric
coefficient of expansion, T and T are the glass temperature and its reference value,
g is the gravity acceleration, C, — the specific heat, and Keg — the effective
thermal conductivity, which is a temperature function.

This system can be written in a dimensionless form:

dive = 0,
1 ~
(v-V)v=-Vp+ ﬁgAv-i-F, (2)
1 1

where 8, p and v are resp. dimensionless temperature, pressure and velocity; Fisa
function of the temperature; Re is the Reynolds number Re = Livq/v, Ly and v are
resp. the scales of length and velocity, Pr is the Prandtl number Pr = v/a, v is the
kinematic viscosity, a = Kea/(pCyp) is the coefficient of temperature conductivity.
Therefore the Prandt] number is a function of the temperature.

The Navier-Stokes equations can be written in an equivalent form, without
pressure p, which 1s more suitable for numerical calculations, namely,

Ow Ow 1 [0%w Ow ~

L ge— = — [ F,
u6x+v8y_ Re(3z2+3y2)+ G)
&y Y _
dz? . Oy?

Here 9 is the stream-function and w is the vorticity:
Ju Ov
W= 'a—y- — 5‘; . : (4)
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In turn, the components of the velocity vector u and v in a rectangular coor-
dinate system (Fig. 1) can be written as functions of the stream function:

u

_9
=5

&y

~%s

2.3. BOUNDARY CONDITIONS FOR THE TEMPERATURE

AND THE STREAM-FUNCTION

(5)

The boundary conditions for the temperature and stream-function are given
in Table 1. The special feature of Navier-Stokes equations is that the boundary
conditions are given only for the stream-function and for the vorticity they must
be calculated on the base of the values of the stream-function on the boundaries.

The boundary conditions are described in details in {4].

Table 1
Dimensionless Dimensionless
Temperature Stream-function
g Y
98¢ Uw, Lo oy
Front wall; IA — = —1(0—~ 08, =0; — =0
oy 7 K | ) v oz
e - 8
Back wall; BC —-2 = U,’LO (8 - 6a) P = 0; -—1/,- =0
oz eff ox
86 UyL oY
Bottom; AB —= —(0-0,) P=0, — =0
o oy Keg ( ) oy
Shield assembly wall; DE ﬂ =0 ¥ = C] = const; % =0
oz oz
Shield assembly wall; EF _3_0 =0 i = C1 = const; _3_1/: =0
oy dy
0 .
Shield assembly wall; FG 3__ =0 ¥ = C; = const; % =
oz oz
6 L
Top surface; HI 8— =0 ¥ = f V dz; 2‘& =0
dy LwLy dy
a0 Lo oY
Top surface; GH — =gr Y =C; =const; — =0
P dy KeaTo dy
' 00 Lo oY '
face; KD _— = =Cy = t; — =0
Top surface . 3 gc Koo ¥ 1 = cons ™
L
, a6 Lo } oY
Place of drawing machines; CK — = qc— Y=~ | Vdz; — =0
& 3y KeTo af dy
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The following notations are used in Table 1: U; is the heat transfer coefficient
of solid surfaces (the front wall, the back wall and the bottom), whose values are
different for the different surfaces; 8, is the dimensionless ambient temperature; g7,
gc are the heat flows, entering the glass melt surface.

2.4. HEAT FLOW AT THE GLASS SURFACE

For the present purposes, we shall formulate a model for the heat flow, using
experimental data for the distribution of the fuel flux from the burners. The heat
losses due to outlet combustion gasses are taken into account. The distribution of
the heat flow entering the glass melt surface along the z-direction and its approxi-
mation are given in Fig. 2. The distribution is approximated by the function

log ¢ = 1.0489 + 0.0173z — 0.0000770258z2. (6)

In the model 14 different functions are to be chosen. The criterion for the best
choice is a maximal correlation coefficient and a minimal mean square error.

3. NUMERICAL PROCEDURE

A 5-point approximation is used for the solution of the system of partial dif-
ferential equations. The grid is non-uniform and it is concentrated in critical areas
(near the walls, the bottom and the top surface). The number of points used in
the numerical solution is 497 in the z-direction and 23 in the y-direction.

An alternating direction implicit method is used for numerical calculation of
the Navier — Stokes equations written in term of stream-function and vorticity and
of heat transfer equation. This algorithm is described in detail in [3]. This method
is iterative and is based on the solving of the tri-diagonal matrix.

1207
100
80 -
60
401

20

Fig. 2. Distribution of the heat flow in the z-direction and its approximation
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4. NUMERICAL RESULTS AND DISCUSSION

We shall use the present mathematical model for an investigation of the heat
regime in the glass melt and the influence of the heat flow upon the temperature
distribution. Usually, the temperature of the glass melt which enters into the
cooling zone is controlled by a change of the fuel flux from the last two couples of
burners. That is why we shall study first of all the influence of the heat flow from
these burners upon the temperature of the glass melt.

4.1. MODEL PARAMETERS

The tank size considered (Fig. 1) has 48.6 m length and 1.2 m depth. The
geometrical dimensions of the melting and cooling zones of the tank are given in
Table 2. The heat transfer coefficients of the bottom and front and back walls are
given in the same table. The thermophisycal properties for the glass melt (density,
specific heat, kinematical viscosity and effective thermal conductivity) for the flat
glass melt are taken from the literature [1, 2] and they are summarized in Table 2.

Table 2
Parameters Value
Density, p . 2320 kg/m3
Specific heat, Cp - 1256 J/(kg.K)
Kinematics viscosity, v 0.0101 m?/s
Effective thermal conductivity, K.g 5.386 — 2.168 X 10™2T 4 2.058 x 10~3T?
Prandtl number, Pr 29430.6 /K o5
Reynolds number, Re 0.0222
Melting temperature, T, 1100 K
Ambient temperature, Tq 350 K
Heat transfer coefficient of the
walls and the bottom, U 4 W/(m?K)
Melting zone: length, IG ' ’ 35.4m
depth, IA - 1.2m
Length of the batch, IH " 0.3m
Cooling zone: length, CD | 12.2 m
depth, BC 1.2m
Shield assembly: leng’th. EF 1.0m
depth, GF 0.35m
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4.2. RESULTS FOR THE BASIC SIMULATION

The basic simulation is calculated for the parameters given in Table 2 and for
the heat flow approximation, given by the function (6) (see Fig.2). The tempera-
ture distribution for the basic simulation is plotted in Fig. 3 and the stream-function
field is shown in Fig. 4.

The maximal temperature is calculated at the top surface in the melting zone
for z = 11.1 m and it equals 2020.4 K. The maximal temperature gradient is in the
same area. The minimal temperature in the tank is 1262 K and it is calculated near
the front wall and the bottom. The maximal temperature gradient is in the area
with maximal heat flow (z = 11 m). In this area the difference between temperature
at the top and at the bottom is 600 K. The same difference in the area with minimal
heat flow (z = 0 m) is 50 K. The temperature gradient in the cooling zone near the

back wall is only 20 K.
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Fig. 4. Stream-function field for the basic simulation

4.3. INVESTIGATION OF THE INFLUENCE OF THE HEAT FLOW

We shall investigate the decrease and the increase of the heat flow from the last
two couples of burners by 10 and 20 percent. Different variants for the distribution
of the heat flow and its approximation are given in Table 3.
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Table 3

Heat flow Heat flow
| Variant f:?;;l:,:i.h f:?:gl:’i-fth Approximation of the heat flow
burners, % burners, %
1 100 100 log g = 1.0489 + 0.0173z — 0.0000770258z2
2 100 90 log ¢ = 0.9695 + 0.018744z — 0.000082906z2
3 100 80 log ¢ = 0.8806 + 0.020343x — 0.000089479z2
4 90 20 log g = 1.0272 + 0.017879z ~ 0.000080401z2
5 80 90 log g = 1.0918 + 0.016913z — 0.000077602z?
6 90 80 logg = 01.9384 + 0.019479z — 0.000086975z2
7 80 80 log g = 1.0030 + 0.018513z — 0.0000841 76z
8 90 100 logg = 1.1067 4 0.016486z — 0.000074522z2
9 80 100 logq = 1.7113 + 0.015482z — 0.000071723c2

The decreasing of the heat flow from the last couple of burners (VI) by 10
percent leads to decrease of the temperature of the glass melt surface with 12 K.
20 percent decreasing of the heat flow leads to decrease of the temperature with 24
K (see Fig.5). The maximal change of the temperature is near the top surface in
the zone under the VI-th couple of burners (z = 17 to 25m). Little changes of the
fuel flux can lead to a smooth change of the temperature of this zone.

The influence of the heat flow from the V-th couple of burners upon the tem-
perature is given in Fig. 6. This couple of burners dislocates at z = 17.9 m. That
1s why the maximal differences in the temperatures are observed for z = 15 m and
they are 12.3 K for 10 percent decreasing of the heat flow and 25.7 K for 20 percent
decreasing. .

Maximal temperature differences when the heat flow decreases from V-th and
VI-th couples of burners (variants 1, 4, 5, 6 and 7) are observed for ¢ = 15m to
25 m, too. The decreasing of the heat flow from the V-th and VI-tk couples of
burners leads to decrease of the temperature at the top surface maximum with 36
K and its temperature difference is under the VI-th couple of burners (z = 19 m).
Therefore the change of the heat flow from the V-th and VI-th couples of burners
can be used for the automatic control of the temperature distribution at the end
of the melting zone and in the cooling zone.

4.4. COMPARISON BETWEEN THE COMPUTED RESULTS
AND THE EXPERIMENTAL DATA FOR THE TEMPERATURE:

The results from the mathematical model could be compared with measure-
ments in the working furnace which is described in this study. The measurement of
the temperature of the glass melt is very difficult. The glass surface temperature
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Fig. 5. Temperature of the glass melt at the top surface for variants 1, 2 and 3
(Table 3)
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Fig. 6. Temperature of the glass melt at the top surface for variants 1, 8 and 9
(Table 3)

is measured using pyrometers, which leads to considerable errors. As a matter of
fact, the temperature within the glass melt cannot be measured and it is practically
impossible to have reliable information about it.-

The experimental data and computed results for the basic variant for the sur-
face temperature are shown in Fig. 7. It is well seen that the results for the surface
temperature agree very well with the measured temperature. The comparison of
the simulation results and real data shows that the model gives good results for
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Fig. 7. Computed results and experimental data for the surface temperature

the surface temperature in the melting and cooling zones. The maximal difference
is in the zone of burners.

¢

5. CONCLUDING REMARKS

A simplified, but effective mathematical model of the heat transfer and trans-
port processes in the glass melting furnace is presented. The numerical solution
uses a finite differences method. The influence of the heat flow from the last two
couple of burners is investigated. The comparison of the calculated results and the
real data demonstrates a good agreement. The present model offers as well the
possibility of computing the appropriate spatial distributions of the temperature
and velocity fields. It is possible to study, in particular, the energetical behaviour of
the furnace and the influence of its technological parameters upon the temperature
and velocity distributions. The approach presented here can be also modified in
order to include more specific details of the heat flow and heat transfer in the com-
bustion chamber for calculating more precisely the boundary conditions and the
temperature on the glass melting surface. For example, if the air-bubbles motion
is taken into account, we can obtain more precise results for the temperature and
velocity fields within the furnace.
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