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In this paper an effective iterative method for computing the eigenvalues and eigen-
vectors of a real Hamiltonian matrix is described and its applicability discussed. The
method is an adaptation for Hamiltonian matrices of the methods for computing eigen-
values of real matrices due to Veseli¢ and Voevodin. It uses symplectic similarity trans-
formations and preserves the Hamiltonian structure of the matrix. Our method can be
used for solving algebraic Riccati equation. The method is tested numerically and a
comparison with the performance of other numerical algorithms is presented.
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1. INTRODUCTION

Many applications lead to solving the real spectral problem
Hr = Az,
where A B
H=H(A B,D)= ( D AT ),
A€ER™", B= BT ¢ R"™", D= DT e R"*".
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Recall that the real matrix H is called Hamiltonian or J-skewsymmetric if

JTHJ] = —HT, where J = ( O I

_In On

is the n x n zero matrix (7, 11, 12]. A matrix U € R"*" is called a symplectic or

J-orthogonal if UTJU = J. It is well-known that if H is a Hamiltonian matrix and
U 1s a symplectic matrix, then the matrix / "' HU is a Hamiltonian matrix.

Generalizations of the Jacobi process for arbitrary matrices, based on the fact
that there exists a matrix P such that A = P~1AP is arbitrarily close to being
normal, have been proposed [3, 15, 16]. In other words, the absolute value of every
element of AA* — A*A is arbitrarily small. Byers [2] has proposed a symplectic
Jacobi-like algorithm for the computation of the Hamiltonian-Schur decomposition
of Hamiltonian matrices. Byers’ method is an adaptation of the non-symmetric
Jacobi method proposed by Stewart [14].

In this paper an iterative method for solving the spectral problem for a Hamil-
tontan matrix is developed. It is a modification for Hamiltonian matrices of Veselié’s
and Voevodin’s methods for computing eigenvalues of real matrices [15, 16]. The
method uses similarity transformations with symplectic matrices. These transfor-
mations keep the block structure of a Hamiltonian matrix. This method can be
used for solution of the algebraic Riccati equation.

The algebraic Riccati equation is of great practical importance due to its key
role in control theory. There exist different procedures for solving this equation: a
method solving a suitable matrix equation [6], a method solving a spectral problem
- for the Hamiltonian matrix [13]. Other methods are discussed in (8, 10, 17].

), I, 1s the n x n identity matrix and 0,

2. DESCRIPTION OF THE ALGORITHM

Now we describe the algorithm of our method. In this algorithm we construct
the following sequence of Hamiltonian similar matrices:

Hl(Al,Bl,Dl) = H(A B D)
Hiyr = H(Akg1, Big1, Deg1) = UZ HpUe = (REFD), (2.1)
k =1,2,3, where Uy = Up,q, (x) is a suitable symplectic matrix. The matrix Uy

depends on three parameters pg, ¢r and @i for each k. At each iteration step the
parameters of Uy are chosen either to minimize

2
|Ug ' HiUll,  where ||Hk||=2(h$';)) ,

rs

or to annihilate the off-diagonal elements of the symmetric matrix Hpq41 + H, .
To give an idea for the iterative process (2.1), we shall explain only the k-th
iteration step of the algorithm. We introduce the notation

Hy = H(Ag, B, D) = (h{¥),
Ap = (), B=(6%)), D = (d)).
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For the matrices Hy + HI and Cy we have

Hy+ HF = H(Ax+ Af,Br + Dy, Dy + B),
Cy =C(Hy) = (¥ = HyHT — H{ Hy = H(Fx, Ex, E),

where
Fo = FT = AcAT + BiBi — AT Ay — DiDi = (f52)),
Ex = ET = AxDy— BiAr— AL By + DkAT = ().

The strategy, determining U from (2.1) and parameters Pk, 9k, @k, 18 the
following. At the k-th iteration step we find the numbers

¥ = m;x |c$’§)|%' and h(¥) = m:xlhgj) + A

for the matrices Cr and Hy.
Then there are six possible cases to be considered successively:

Al |fP2=c®>h®) 1<p=p<qg=q <N, = ¢k
In this case we choose the matrix Up = Upq(p) of the form

0=t = (07 o2 ) (2:2)

where Syq(p) € R"*" is the matrix

gp = ¥

Spe(p) = (sij) = { si; =6, (4,7) ¢ {(3,p)}.

Note that S, () = Spy(—¥)-
The parameter ¢ is computed by the formula

~ 2£5)

" max (21, M) | .
where
w = 23 () () +22 ()" + (4)')

i#9
+ 2(a® = a®) 44 (6) 41 ()

;o ((ag;))z +(6)" 4+ (a®) + (4) +2 (o) + (agg>)2) |
A2 [P =c®>hE) 1<p=pr<q=qr <n, pr = .
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Then the matrix U = 'U.'pq(cp) is of the form

U= ( Ig S”;ﬁ“’) ) (2.4)

where S, () € R"™" is the matrix

B .S“ _ Spg = ¥,
Spe(p) = (8ij) = { sij =0, (4,7) ¢ {(p,q)}.

In this case the paramet,ef @ 1s computed by the formula

2e(k) |
7 e () “
where
up = 2% () + (&) +2 3 (@)1 3 (W)
j I#9q i#p

b2 (ol o) (o) (o)
e or () 4 (60) "+ () " () () (49)").

A3, Je? =M >h®) 1<p=p=g=q <n, g =0
Then the matrix U = Up,(¢p) is of the form

U = ( I(;‘ S”Ii“’) ) (2.6)

where
Sp(p) = diag[l,- 1,60,1 ~p]

and ¢ 1s computed by

lp.: E .
max (Iepp)|, M,Ep))
and
b (6))? (5))? oY o 2 (1)) )
u = 23 (49) +20 (o) 4 (o) 4 ()" + (49)).
j i#p .
Ad |+ =r® > c® 1<p=p<qg=qr <n, 0=y
In this case we choose the matrix Uy = Upq(¢),
Upq(p) = diag[Tpq(), Tpq(9)], (2.8)
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where Tp,(p) € R™™" is a matrix of the form

tppkz lgq = cOS @,
Toq(p) = (tgy) = § tpg = —tgp = —sin g,
tpy = 8py, (8,7) & {(p,p),(p,9),(a,p), (9,9}

The parameter ¢ is computed from the equation

(k) (k)
_ 9pg’ T agp
Qpp” — Qqq

A5, |05y 465 = h*) > B 1< p=py<g=q <n, p= g
We choose the matrix Uy = Upq(¢p),

cC -S
Upq() = ( s C ), (2.9)
where C, S € R"*" and
C = diag[lp_1,cos9,I;_p,cosp, Im—ql,
Spg = Sgp = SIN Y,
S — (s :{ Pq gp
$81) =\ 53y =0, (B7) ¢ {(0.0), (@:P)}-

In this case the parameter ¢ is computed from the equation

(k) df,

te(20) = Gy NOIMON
App

A6, |bhy) + 65| =hE) > B 1<p=p=g=g <n, 0= .
The matrix Ux = Upg(y) has the form

Upe() = (g ;S> | (2.10)

where C, S € R"*" and

C = diag{l,—1,cos¢, Im_p],

S _ Spp = sin ¥,
(58+) { sgy =0, (8,7) & {(p,p)},

with the parameter ¢ computed now from the equation

b(k) + d(k)
tg(2‘P)= (k) (k)
App App
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We shall prove now the following

Lemma 2.1. Let p,q, 1 < p < ¢ < n, and Hk+’l = U~'HU, where U =
Upqe() is given by (2.2), (2.4) or (2.6); the parameter ¢ is computed by means of
Egs. (2.3), (2.5) or (2.7), respectively. Then

2 (1?2 — 1 = 1)(cF))*
™ max(2(c(®))2, M) T T || Hil?”

IH|? = | Hesa ]l >

where 7 > (1 +/5)/2.

Proof. Let us choose p, g so that 1 < p < ¢ < n. We shall provide a detailed
proof of the lemma in the case A.1. only, since the reasoning in the rest of the

cases is fully similar.
We compute ¢ from (2.3), choose the matrix U from (2.2) and construct

Hiy1 = U HiU. Then for A(p) we get

Alp) = [|Hel® = ||Henl
= =Gy' - Qp’ ~ W + 4Dy,

where
= 2(a) + () + ()
Q = 4aff) (aff) - o)) — 4b{0(E) + 4a(alh),
W= o (W) ()) 2 () (4))
i#q i#p
(o - ) 44 (49) "+ (49)°

E)p(k k) j(k k) (k
ngp)bgq) + de(vp)dgq) - 4";9)"5»)'

We find W W
W] Wi,

— k —
max (21539, M) ~ Mg

Consider the inequality
t4:c2 + y2

3 (2.12)

2zy <

which holds for all real numbers ¢, z, y; setting, in particular, t = /7, z = \/§]a,(,’;)|,
y= ﬁla},’i,) - a§§)|, we obtain

2 2
1 (o o) < C2E0) 2 (o2 kd)
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Similarly, we get

2 2
KD < 2 (o) T+4(b£§)) |

Thus the expression Q)| becomes

o2 (o) +2 (o) - )’

Q) < -
(TOB) ra () | () ()
Consequently,
e cdor 1
-

k k) — ap(k) =
max (2|f,(,q)], M,Sp)) Mgy
Similarly, we have

6l 16l 2 (a$9)" + (669)" + () )
max (2|f,£k)| M}:)) B M}:) - M) = 72

Using the above inequalities, we obtain

Alp) > 4fBo— |Wie? - Qe ~ Gl
> 20%max (2, MP) - Wle* - 1QI¢* - |Gl
_ k k 2 Wi+ QI +1G|
- max (2lf;£q)|)M(§p)) 2¢ - (k) (k) <P
_ max (2|qu I»qu )
1 1
> max (215, MP) <2<p'~’ ~(1+-+ ;—;)wz)
?—r-1
= max (2| (k)| Mq(,'f)) (———;2———) ©°
Then
21 4:()‘("))2
Alp) 2 = () a7 (E)
max (2|qu |, Mgp )
Since

max (2| ('“)l Mg;f)) <4(rt-r-1) IH|Z, 7> (14 V5)/2

1
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and therefore

Ay > L U _ L ()
P2 HAE T 72 HP

This completes the proof of the case A.1. The proofs of cases A.2 and A.3
are fully similar, as already pointed out. [

Lemma 2.2. Let p,¢ be natural numbers, 1 < p < ¢ < n, and Hyyy =
U~'HpU, where Hj is a matrix from the sequence (2.1). Let the matrix U =
Uprq(px) be given by (2.2), (2.4) or (2.6), and ¢ be computed by (2.3), (2.5) or
(2.7),'respectively. Then

AEHD — R{D| < 4|l
forr,s=1,...,2n.

Proof. Let p,q be integers, 1 < p < ¢ < n, and let U be a matrix of the type
(2.2) with ¢ computed by means of (2.3). Then

( lagﬁ“) (k){ 1<rs<n,
k41 k
R+ _ p(k)| = IbS's n) b,(-.;)_nl 1<r<n, n+1<s<2n,
T i) — d, ), n+1<r<2n, 1<s<n,
\ l - a(’i—tll') n + ask—)ns—nl: n+1 S r,Ss S 2n.

For the expression la( ) ar.,)[ we obtain in turn
( |a£ +<pa(k) ar,,)l r=1,...,n,r#q,
|a(k) goa,(,ﬁ) aq,)l s=1,...,n,s#p,
|a£§+l) - aﬁ'j)i = k) k) k)
]a( ) - (agp - a«(n ) - 9o2a,(, aqp)| r=p s=4q,
[ 0, otherwise.

Hence
lals*+1) — o(B)] < Isoa(")l

k
2fsq) ja®)
max (2157, M)

< 20£91 =2l

<

for r=1,...,nand r # q.
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In the same manner it can be shown that

a6+ oD < 2B =211, s=1,...,n, s#p,
i+ —alD| < lpllafy) - afP] + lpflal)]

< ol (o) - afb)] + 1aff1)

< Al = 4l

and

|b(k+1) b(k) I < 4|C(k)|2

rs—n
k41 k
a5 —d® < 4l

This completes the proof of the case A.1. The proofs of cases A.2. and A.3.
are again similar and omitted. [J

Theorem 2.3. The iterative method (2.1) has the following properties:
[. C(Hy) — 0, k— oo.
II. The symmetric matrix 3(Hp + HJ]) tends to the diagonal matrix

1(Ho + HT), where Ho = H(Ao, Bo, Do) = (h{?), and
1
5(Ho+ HY) = diaglh{?, ... b))

where hg?) are the real parts of the eigenvalues of the matrix H.
II. Let p, ¢ be natural numbers, 1 < p # ¢ < 2n, and h;?,) # h(O) Then

k
h{E) — 0, &k — oo.

IV. Let p,q be natural numbers 1 <p3#q<2n, hg,?,) = hgg), and for each t,
1 <t<2n,t+#p,q, we have h ;é h(o) Then

k 0
B — B

g ! k — oo,

where h§,‘3’ is the imaginary part of the eigenvalues of H with real part h,(,(,),).

Proof. 1. We consider the sequence ||Hk||?, k = 1,2,3,... The similarity trans-
formations with matrices of the form (2.8), (2.9) and (2.10) preserve the Euclidean
norm and the similarity transformations with matrices of the form (2.2), (2.4)
and (2.6) decrease or preserve the Euclidean norm implying that the sequence
|H1|1%, ||H2||?, - . . is monotonically decreasing. Let for each matrix Hy a number
aj be introduced such that

_ [0, if Uy isof the form (2.8), (2.9), (2.10),
* =1, if Uy is of the form (2.2), (2.4), (2.6).
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The sequence of matrices {H;} is bounded. From this sequence we choose a con-
vergent subsequence {H,}, where s € S C N and N is the set of natural numbers.
Suppose that {a,} contains an infinite number of ones and {H,,} is such a sub-
sequence of {H,} that for each m € M C S C N we have a,, = 1. Then from
Lemma 1 it follows
1 (c(m))4
2 I H]P
Hence ¢{™) — 0, m — oo. From the inequality A(™ < ¢(™) it follows that
(™) -0, m — oo,

Let Hy = H(Ao, Bo, Do) = (hS ) be a limit of the sequence {H,,}. For
Ho + HY and C(H,) we obtain

Ho+ H] = H(Ao+AY,Bo+ DY, Do + BT) = () + a(9),
C(Ho) = H(Fo, Eo, Eo) = (c{9),

IHmll* = [ Hmaa]l* 2

where

Fo = FJ = AoAL + BoBy — A} Ay — DoDo = (£5)),

Ey = EJ = AoDo— BoAo— AJ By + DoA% = (e5).
Since Hp is a limit, then if r # s, we have h(o) + h£2> = 0 and c£2) = 0. From
A9 4+ Y = 0, r # s, 1t follows that

o) +a9 =0, B#y, (2.13)
by ~d%Q =0, By=1,..n (2.14)

For the elements fé?y) of C(Hy) we obtain

O S EONORNONOFOFORNOND
150 =3 (afPal ~ afPal) + dPdl) — 66 0) .

B3 iy B3 "3y
J

From (2.13), (2.14) and 9 = 0 we compute
0 0 0 '
75 = 24§ (af) - oY) =0. (2.15)

Consequently,
f[(,%)_ g=1,...,n.
Similarly, we find

ey = 20 (e +afQ) =0, By=1,..,n (2.16)

Hence {3 = 0 for each r and s, i.e. Hy is a normal matrix and Ho + HY is
a diagonal matrix. Then the diagonal elements h(lol), : ,h(;:,)zn are the real parts of

eigenvalues of H.
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For the subsequence {H,,} we have C(H,,) — 0, m — oo, where ||H,||> —
2377, Wil?, vj = Xj + ip;. Since the whole sequence ||H|| is non-increasing, it
follows that ||He|| — 237, |vj|?, i.e: C(Hi) — 0, k — co. Hence the sequence
Hy tends to a normal matrix.

Let the sequence {ayx} contains only a finite number of ones. Then there is a
natural number so and for each s, so that s > sy, a, = 0, i.e. the matrices U, are
of the form (2.8) or (2.9) or (2.10). Then

() -0, s — oo,

Since ¢(*) < h(*), then
c®) 50, s — 0.

Hence the convergent subsequence H, has a limit Ho = H(Ag, Bo, Dy) with
the properties (2.13) — (2.16). This proves I.

II. We will prove that h(¥) — 0, k = 1,2,..., for the sequence {H;}.
proving I we have found a subsequence {H,} of H;. We consider the case when the
sequence {a;} contains an infinite number of both zeros and ones. Let {a,} be a
subsequence of {ax}. If ap = 1, then h(P) — 0, p — co. We consider the sequence
of all indices ky,...,ks,..., so that @z, = 0 and a;,~; = 1 for s = 1,2,... In the
case m = k,, according to Lemma 2 we obtain

|Am| < |R(m=1)| 4 |a(m) — p(m=1)|
< .h(m—l)l-{-S(c(m-l))‘l.

Since ¢(™"1) — 0 and h(™VD S 0form=k,and s =1,2,... (m—1=k,—1), it
follows that (™) — 0. Let o2 denote a sum of the squares of off-diagonal elements
in blocks of the symmetric matrix Hg + H{ . Then we have

) < 62 < 2n(2n — 1)A),

For the subsequence {H,,} from A(™) — 0 it follows that o2, — 0.

Consider the indices m +t of {ax}. For m = k, it is true for a,_; =
I, am—14t = 0, for t = 1,2,...,p and amyp = 1 for s = 1,2,... For these
indices the number sequence 0',2"“. is monotonically decreasing, because for the
matrix Hmye + HL ., a step is used from a modification of Jacobi’s method for a
symmetric Hamiltonian matrix [9].

It thus follows that o7 — 0 for k = 1,2,..., and h(¥) — O for the same k.
Hence from 1 we obtain that each convergent subsequence of Hy has a limit with
the properties (2.13) — (2.16) and its diagonal elements are the real parts of the
eigenvalues of H.

ITII. Now we will prove that if hf,(;,) # h 22), p # ¢, then h,(,q) — 0, k& — oo.
There are three possible cases.
0 _ 0 (0) _ (0
Let p, ¢ be natural numbers 1<p#q<n. Then hyy =apy, and hgy = ag4 .
Since hS ) 5 g),), g,?,) # a\y, from (2.15) we have agq) =0,1.e. hgq = 0.

115



Let p, ¢ be natural numbers, 1 < p < n, n+1 < ¢ < 2n. Then h(o)
a;,g), hgg) = —a f,o)nq n h,(,?,) = bl(o?z) n+ Since h( ) hg?,), from (2.16) when p # ¢—n
we have

o0 op(0) (h(O) _ hf,?,)) - 0.

Pq n pg—n pp

Hence b;,?]) n = 0. When p = ¢ — n, from (2.16) we obtain

el?) = 4609 o) = 0.

If a,g,),) = 0, it follows that hgg) = hgg), because h;,p = a,(,(,),) =0, h,‘,‘;) = — go)nq_n =
—ap,,) Hence bﬁ,p) =

In the case n+ 1 < p < 2n, 1 < ¢ < n, the proof is similar to that of the case
1<p<n, n+1<qg<2n.

IV. Let {H,} be a convergent subsequence of {H} with the limit
Ho = H(Aq, Bo, Do) = (h$‘,’) .

The limit Hy possesses the properties (2.13) - (2.16). Let h,(,(,],) = 5‘3), p # ¢, and
for each t # p, q, hg?) # hg,(,),). We choose the number ¢ sothat 1 <t < 2n, t # p,q.
Then, according to I1I, in the rows and columns of Hy with numbers p, ¢ there will

exist only two nonzero off-diagonal elements h,(,%), h(o)

If 1 < p,¢q < n, then the nonzero off-diagonal elements are a,(pq), a(qp) Conse-

quently, a,(op) +i a( ) and ag(,),) +i ag,g) are eigenvalues of the Hamiltonian matrix
H | _
If1<p<n nt+l <q¢g<2n, p#q—n,then the nonzero off-diagonal elements

are bf,(;)_n, dgo)np bpq) - -This implies that a( ):t i bg,q) n are eigenvalues of the
h(o) — p(®

Hamiltonian matrix /. From the type of Hp follows that h,”,,_, pinptn

Hence ago_)nq_n +i bg )np are eigenvalues of the Hamiltonian matrix H.

fl1<p<n n+1<q¢g<2n, p=gqg-n, from the type Hp it follows that
hg;,) = hf,?,) = 0. Then the nonzero elements are bpp , df,p = },‘,’,), and +i b,(,,,) are

eigenvalues of the Hamiltonian matrix H.. [

3. APPLICATIONS AND NUMERICAL EXPERIMENTS

Numerical experiments for solving the spectral problem for Hamiltonian ma-
trices and for numerical computing of the solution of the algebraic Riccati equation
are performed and will be reported in this section. All numerical experiments
were made on a PENTIUM computer using the algorithmic language Turbo Pascal
and the real arithmetic having an 11 sedecimal digit mantissa. The code of our
algorithm uses a cyclic choice on the pivot indices (p, q). |
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The presented method for computing the spectral problem of a Hamilto-
nian matrix is the Jacobi type method for solving the eigenproblem of real non-
symmetric matrices. The reason is that in the Jacobi method for finding the eigen-
values only two rows and columns are involved in each iteration step of our method.
The parallel implementation of our algorithm can be followed of those for Jacobi
algorithm for symmetric eigenvalue on the hypercube or a linear array of processors
[4] and on distributed memory multiprocessors [5].

3.1. THE SPECTRAL PROBLEM FOR HAMILTONIAN MATRICES

The code of our algorithm computes the eigenvalues of an (n x n)-Hamiltonian
matrix H = H(4, B, D). Let us denote € = max; |A; — A;|, where A; are the exact
eigenvalues and A; are the computed eigenvalues obtained by our algorithm.

Example 1 [1]. Consider the matrix

A 0
H=U (0 _AT) U7, (3.1)
where A € R"*",
(ay; = —10°,

a;=n+1-—12, 1=2,...,n—2,
A= (a"j) =< Gn-in-1= Qnn = 2,

Qri-1n = —Qpn-1 =1,

a;j = 0, otherwise,

\

and the matrix U is the product of randomly generated symplectic matrices of the
form (2.2), (2.4), (2.8). The followmg results are obtained in this case:

TABLE 1

n 5 10 - 15 20 25
€ 1.3245E -~ 7 | 4.2331E -7 | 2.1289F -7 | 1.5673E~7 | 5.3289E ~ 6

Example 2. Consider the matrix (3.1), where A is a diagonal matrix with
randomly ‘chosen elements and the matrix U is the product of randomly generated
symplectic matrices of the form (2.2), (2.4), (2. 8) The results are shown in the
following table:

TABLE 2

n 5 10 15 20 25
€ | 2.5463E — 10 | 1.3568E — 10 | 6.8452E — 8 | 3.4562FE — 8 | 1.2344F - 6
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Example 3. We have executed numerical experiments of random strict diag-
onal dominant Hamiltonian matrices using Byers’ algorithm [2] and the algorithm
proposed here. Table 3 displays the average number of sweeps necessary for con-
vergence. Each trial includes 10 matrices of the different dimensions.

TABLE 3
n | Byers’ algorithm | Our algorithm
10 14 12
15 15 15
20 18 16
30 19 16

We compare Byers’ method with our method. Byers’ algorithm computes
2n? similarity transformations per sweep, the method proposed here computes
n(n + 1)/2 similarity transformations. Byers’ algorithm makes 32n3 4+ O(n?) flops
for computing the 2n? transformations. Qur algorithm makes 20n° 4+ O(n?) flops
for computing the n(n + 1)/2 transformations. Hence we obtain that one sweep
of the Byers’ algorithm is more expensive than a sweep of the algorithm proposed
here. Our algorithm is faster than Byers’ algorithm for the above set of exam-
ples (Example 3). Moreover, Byers’ method uses complex arithmetic, while in our
method real arithmetic is solely utilized.

In the case of a symmetric Hamiltonian matrix our method uses similarity
transformations with orthogonal symplectic matrices of the form (2.2), (2.4), (2.6).
The amount of work for performing the transformations per sweep is 12n% + O(n?)
flops. We have made numerical experiments for randomly generating symmetric
Hamiltonian matrices for the same dimensions as in Example 3. We have obtained
that the average number of sweeps of the method proposed here is equal to the
average number of sweeps of Byers’ method.

-3.2. NUMERICAL SOLUTION OF THE ALGEBRAIC RICCATI EQUATION

The algorithm for computing the eigenvalues and eigenvectors of a real Hamil-
tonian matrix presented here can be successfully used to calculate the solution of
the Riccati equation

L(X)=XBX -XA-ATX -D=0, (3.2)

where A € R™" B = BT ¢ R"*" D = DT € R®*" and B is a positive definite
matrix, D is a positive semidefinite matrix.

The computation of the solution P of (3.2) leads to the solving of the spectral
problem for the Hamiltonian matrix H = H(A,—B,-D). An algorithm for com-
puting the solution P is described in (8, 10]. The matrix H = H(A,—-B,-D) is
reduced in Schur’s form A with the QR-algorithm

Ui Uiz )

UTHU = H, U:(
Ui U
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For the solution P of the equation (3.2) we have P = Uy U;;! [8, 10].

We propose the following algorithm for solving the algebraic Riccati equation
(3.2). We compute the eigenvalues and eigenvectors of the Hamiltonian matrix
H = H(A, —B,—D) with the algorithm described in Section 2. The matrix U of
the eigenvectors of H is partitioned into four (n X n)-blocks

U - ( Unn Uiz )
Uz Uz
and then we compute the solution P = Uz, U;;! of the matrix equation (3.2).

We have made numerical experimens for computing the solution of the equation
(3.2). For these experiments three algorithms have been used. The first algorithm
W1 uses the QR-method [8, 10]. The second algorithm W2 uses the iterative
method described by Petkov and Ivanov [13]. This method computes the eigenval-
ues and eigenvectors of H = H(A,—B,—D) and then the solution P = Uy, Ul"ll is
found. The third algorithm W3 uses the iterative method wich solves the spectral
problem of a Hamiltonian matrix. In the programs of algorithms W2 and W3 we
use a cyclic choice on the pivot indices (p, g).

The matrices A, B, D, for which the solution of the equation (3.2) is computed,
are the matrices from Example 1 and Example 2 from Section 3.1 and the examples
described below. On each trial we compute the accuracy of the computed solution

The results from Example 1 and Example 2 are given in Table 4.

TABLE 4
Example w1 W2 W3
Example 1 n=5 [|[L(P)||s 1.0862E ~7 | 1.8703E —7 | 6.2748FE — 8
Example 1 n =10 ||L(P)|leo | 3.3222E -7 | 4.1609E -7 | 3.3191E - 7
Example 1 n =20 ||L(P)|joc | 7.9954E — 4 | 3.1569E —4 | 1.4978E — 4
Example 2 n =5 ||L(P)||l 2.8741E — 10 | 5.2502FE -9 | 1.2554E -9
Example 2 n =10 ||L(P)lleo | 2.3272E -5 | 5.0117E -8 | 2.6402E — 7
Example 2 n =20 ||L(P)|loc | 7.5153E —7 | 1.3549E —7 | 2.0637E - 8

i, if i=j,
A = ij) — . . . i .
(a5) {=+J, if i#j,
B = diag[1,2%...,n%,
D = diag[l,2,...,n].

The results from this example are shown in the following table:

Example 4. The blocks A, B and D in the Riccati equation are of the type
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TABLE 5

-

n W1 W2 W3
5 |IL(P))jeo | 6.7767TE — 5 | 6.9849E — 9 | 6.9028E — 8
10 ||L(P)ljoo | 1.3256E ~3 | 1.6763E —8 | 2.5378E — 8
20 J|IL(P)lloo | 3.4268E — 3 | 1.6938E — 7 | 1.2096E — 7

Example 5 (Example 5 in [10]). We compute the solution of the Riccati
equation with n = 5, 10,20. The results are shown in the following table:

TABLE 6

n Wi W2 w3
5 ||L(P)|lc | 2.7048E — 8 | 9.8542E —~ 7 | 9.8556E — 8
10 ||IL(P)|joc | 2.1153E -8 | 1.1726E -9 | 1.3171E -9
20 ||L(P)||loo | 1.2149E — 4 | 5.0361E -9 | 5.1435E -9

Example 6 (Example 6 in [10]). We compute the solution of the Riccati
equation with n'= 21 and ¢ = r = 1. For the correct results z;,, = 1 we receive the
value z,, = 1.0792769258E + 00.

There are examples (Example 4 and Example 5) for which the iterative meth-

ods W2 and W3 for computing the solution of the Riccati equation are more accu-
rate than the QR-method (W1).

4. CONCLUSION

We have presented and investigated a new method for solving the spectral
problem of Hamiltonian matrices. The method is a generalization of the Jacobi-
like method for arbitrary real matrices, as proposed by Veseli¢ [15]. It allows us to
construct a new algorithm for solving the algebraic Riccati equation. Our method
preserves the special structure of a Hamiltonian matrix and uses less memory than
the algorithm W1 (Q R-method). The method offers simpler computational schemes
~and gives better options for parallel modifications.

We note finally that the algorithm proposed here can be modified as well for
solving the spectral problem for a symplectic matrix. But we were not able to prove
a convergence theorem in this case.
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