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This paper presents automaton construction algorithms based on the method for direct
building of minimal acyclic finite states automaton for a given list [2]. A detailed pre-
sentation of the base algorithm with correctness and complexity proofs is given. The
memory complexity of the base algorithm is O(m) and the worst-case time complexity
is O(nlog(m)), where n is the total number of letters in the input list, m is the size

" of the resulting minimal automaton. Further we present algorithms for direct construc-
tion of minimal automaton presenting the union, intersection and difference of acyclic
automata. In the cases of intersection and difference only the first input automaton has
to be acyclic. The memory complexity of those construction algorithms is O(m), and
the time complexity is O(nlog(m)) for union and O(ny + nlog(m)) for intersection and
difference, where n; is the total number of letters in the first automaton language, n is
the number of all letters in the resulting automaton language and m is the number of
states of the resulting minimal automaton. For construction of minimal automata for
large scale languages, in the practice our algorithms deliver significantly better efficiency
than the standard algorithms.

Keywords: minimal acyclic finite states automaton, construction of minimal automa-
ton
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1. INTRODUCTION

The standard methods for constructing a minimal finite states (FS) automaton
proceed in two stages. On the first stage a deterministic FS automaton is built and
on the second stage this automaton is minimized. For an overview on the modern
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automaton construction and minimization methods see [6, 7). Those methods have
the serious backdraw that the intermediate automaton is huge in respect to the
corresponding minimal one.

For many practical applications the construction of large scale acyclic automa-
ta is an important task. Methods for construction and minimization of acyclic
automata can be found in {3, 4]. Nevertheless, the Revuz’ algorithm (which deliv-
ers the best efficiency) is also a two stage method and has the above mentioned
backdraw. Therefore the use of Revuz’ method for construction of very large au-
tomata 1s difficult.

We shall present bellow methods for direct construction of minimal automata
where the whole construction is performed in one stage and no intermediate au-
tomata are built. Our methods are based on the method for direct construction of
minimal automaton for a given lexicographically sorted list [2]. First we shall intro-
duce the mathematical framework which is presented in more details in [2]. After
that we present in details the corresponding algorithm and give correctness and
complexity proofs. We proceed with a detailed presentation of the algorithms for
direct construction of minimal automaton presenting the union, intersection and
difference of acyclic automata. Those algorithms are direct descents of the base
algorithm. At the end, we give some experimental comparisons of our algorithm
with the corresponding Revuz’ algorithm.

2. MATHEMATICAL CONCEPTS AND RESULTS

Definition 1. A deterministic FS automaton is a tuple A = (X, S, s, F, u),
where:

e ¥ is a finite alphabet;

e S is a finite set of states;

® s € S 1s the starting state;

e ' C S is the set of final states;

e u:Sx X — S is a partial function called the transition function.

The function p is extended naturally over S x £* by induction:
p(r,e) =r,
o= |

wherer€ S,c€X*, a € L.

We will work with a definition of FS automata with a partial transition func-
tion. The only difference from the definition with a total transition function is the
absence of the necessity to introduce a dead state (a non-finite state r, for which
Va € £ (u(r,a) = r)). Later, we will use !u(r, o) to denote that u(r, o) is defined,
and when writing p*(r, o) = z, we will mean 'u(r, o) & p(r,0) = .

p(p*(r,0),a), in case p*(r,o) and p(p*(r,0),a) are defined, |
not defined otherwise,
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Definition 2. Let A = (X, S, s, F, ) be a deterministic FS automaton. Then
the set L(A) C X*, defined as

L(A) = {o € 5° | (5,0) & " (5,0) € F),
is called the language of the automaton A or the language recognized by A.
Two automata A and A’ are called equivalent when L(A) = L(A’). An au-

tomaton is called acyclic when Vr € S Vo € ¥ (u*(r, o) % r). The language of an
acyclic FS automaton is finite.

Definition 3. Let A= (£, S, s, F, y) be a deterministic FS automaton.

1. The state r € S is called reachable from ¢ € S when do € £~ (,u (t,o0) =),
2. We define the subautomaton startmg in 8’ €5 as:
Alg = (8,8, s, FNS, pulsxs),
where ' = {r € S| r is reachable from s'}.
3. Two states s;,52 € S are called equivalent when L(Al,,) = L(Als,).
Definition 4. The deterministic FS automaton A = (X, S, s, F, u) with lan-
guage L(A) is called minimal (with language L(A)) when for every other deter-

ministic FS automaton A’ = (£,5’,s’, F', u') with language L(A’) = L(A) it holds
S| < 15"

From the classical FS theory the following theorem is well-known:

Theorem 5. A deterministic FS automaton with non-empty language is min-
imal if and only if every stale is reachable from the starting state, from every
state a final state is reachable and there are no different equivalent states. There
exists an unique (up to isomorphism) minimal automaton for a given language of
FS automaton.

MINIMAL EXCEPT FOR A WORD AUTOMATA

Bellow we will assume that a finite alphabet ¥ is given and there is a linear
order in ¥. Later, writing lexicographical order of words in £*, we will understand
‘the lexicographical order induced by the linear order of £.

Definition 6. Let A = (2, S, s, F, p) be an acyclic deterministic FS automaton
with language L(A). Then the automaton A is called minimal ezcept for the word
w € ©* when the following conditions hold:

1. Every state is reachable from the starting state and from every state a final
state is reachable.

2. w is a prefix of the last word in the lex1cograph1cal order of L(A).
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In that case we can introduce the following notations:

w:w;‘wz“...w;‘,wherew{‘eEforiz1,2,...,k, (1)
A _ A . — : :
o =si 6 =ultg,wl); 8 =p0twf) ot =pf, wd), (@)

T={t,tf,. .. 1) (3)

3. In the set S\ T there are no different equivalent states.
4. VreSvie{0,1,..., k}VaeZ(p(r,a) 2 t; & (i>0&r=t_&a= wt)).

‘Bellow, when working with minimal except for a given word automaton, we will
use the notations (1)~(3) introduced in the former definition. In case the notation
is not ambiguous, we will write t;, w; instead of t;-‘, w;-“. Clearly, if an automaton
is minimal eéxcept for two different words, one is a prefix of the other.

Proposition 7. Let the automaton A = (X, S, s, F, p) be minimal except for
w. Then: ,
- 1L.VreS\TVaceX(u(ra) — pu(r,a) € S\T).

2. p*(5,0) = t; — 0 =wiwy ... w;.

Proposition 8. An automaton which is minimal ezcept for the empty word €
ts minimal.

Lemma 9. Let the automaton A = (%, S, s, F, ) be minimal ezxcept for w =
wiwy ... wg, w # €. Let there be no state equivalent to t; in the set S\T. Then A
is also minimal except for the word wiwsy ... wg_;.

Lemma 10. Let the automaton A = (X, 5,5, F,u) be minimal ezcept for
W= w\Wy... Wk, w F . Let the state p € S\ T be equivalent to the state ty. Then
the automaton A’ = (£,5" s, F', i) defined as follows:

S =8\ {tx},
F'=F\{t},
p(r,a), in case r #lp_1Va# wp and u(r,a) is defined,
p(r,a) =< p, in case r =1y, a = wy,

not defined otherwise,

is equivalent to the automaton A and is minimal except for the word Wiwy .. We1.

Theorem 11. Let the automaton A = (X,8S,s, F, ) be minimal except for
W' = wiwy ... w,. Let Y € L(A) be the last word in the lezicographical order of the
language of the automaton. Let w be a word which is greater in lezicographical order
than . Letw' be the longest common prefiz of ¥ and w. In that case we can denote
W= W Wy, . . WnWmyy ... We &k > m. Then the automaton A' = (L,8,s,F', 1)
defined as follows:

tm+1;tme2, -, U are new states such that SN {tmy1,tmyz, ..., te} = D,
S, =SU {tm+1atm+2; s ':tk})
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F’=FU{tk},
Lit1, imcaser=t;, m<i<k—-1, a=wy,

u(r, a), in case r € S and p(r,a) is defined and
r;ﬁ tm Va# Wm+1,

is not defined otherwise,

W(r,a) =

is minimal except for w and recognizes the language L(A)U {w}.

Lemma 12. Let the automaton A = (£,S,s, F,p) be minimal ezcept for
w=wiwy...wg. Then forty (refer to the notation introduced in Definition 6) the
following statement holds:

ty is equivalent tor € S\ T < ((tkeFHreF)

& Va € % ((~1u(te, @) & ~u(r @) V (u(ts, @) & Yu(r,0) & u(tx, @) = u(r,a))).

The proofs of the above results are presented in [2].

3. ON-LINE ALGORITHM FOR BUILDING A MINIMAL FS AUTOMATON
FOR A GIVEN LIST

First we describe the method informally and give an example. After that we
give the pseudo-code in a Pascal-like language (like the language used in [1]) with |
correctness proof.

Let a non-empty finite list of words L in lexicographical order be given.. Let
() denote the i-th word of the list. We start with the minimal automaton which
recognizes only the first word of the list. This automaton can be built trivially
and is also minimal except for w(*). Using it as basis, we carry out an induction
on the words of the list. Let us assume that the automaton A™ = (X, S5, F, p)
with language L(™) = {w() | i = 1,2,...,n} has been built and that A s
minimal except for w(®). We have to build the automaton A1) with language
L+D) = {w® | §=1,2,...,n+ 1} which is minimal except for w(*1).

Let o' be the longest common prefix of the words w(™ and w(+1)  Using
several times Lemma 9 and Lemma 10 (corresponding to the actual case), we build
the automaton A’ = (X,5’,s, F', ') which is equivalent to A®™) and is minimal
except for w'."Now we can use Theorem 11 and build the automaton A(n+1) with
language L") = L0 U {0t} = {w) | 1=1,2,...,n+ 1} which is minimal
except for w(»+1),

In this way by induction we build the minimal except for the last word of the
list automaton with language the list L. At the end, using again Lemma 9 and
Lemma 10, we build the automaton equivalent to the former one, which is minimal
except for the empty word. From Proposition 8 we have that it is the minimal
antomaton for the list L. To distinguish efficiently between Lemma 9 and Lemma
10, we can use Lemma 12. O
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Let us describe now the algorithm more formally. We will presume that there
are given implementations for Abstract Data Types (ADT) representing the au-
tomaton state and the dictionary of automaton states. Later, we presume that
NULL 1s the null constant for an arbitrary abstract data type.

On automaton state we shall need the following types and operations:

1. STATE is pointer to a structure representing an automaton state.

2. FIRST_CHAR, LAST_CHAR : char are the first and the last char in
the automaton alphabet. We will assume that the chars are sequentially given in
lexicographical order.

3. function NEW_STATE : STATE returns a new state.

4. function FINAL(STATE) : boolean returns true if the state is final and
false otherwise.

5. procedure SET_FINAL(STATE,boolean) sets the finality of the state to
the boolean parameter.

6. function TRANSITION(STATE,char): STATE returns the state to which
the automaton transits from the parameter state with the parameter char.

7. procedure SET_TRANSITION(STATE char, STATE) sets the transition
from the first parameter state by the parameter char to the second parameter state.

8. procedure PRINT_AUTOMATON(file,STATE) prints the automaton
starting from the parameter state to file.

Having defined the above operations, we make use of the following three func-
tions and procedures: ' A

~ function COPY_STATE (s : STATE) : STATE;

{ copies s to a new state}

var _
r: STATE;
¢ : char;
begin

r:= NEW_STATE;

SET_FINAL(r,FINAL(s));

for ¢ := FIRST_CHAR to LAST_CHAR do
SET _TRANSITION(r,c, TRANSITION(s,c));

return(r);

end; { COPY_STATE}

procedure CLEAR_STATE (s : STATE);
{ clears all transitions of s and sets it to non-final one }
var c¢ : char;
begin
SET_FINAL(s,false);
for ¢ := FIRST_CHAR to LAST_CHAR do
SET_TRANSITION(s,¢,NULL);
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end; { CLEAR_STATE}

function COMPARE_STATES (s1,s2 : STATE) : integer,
{ compares two states} :
var ¢ : char;
begin
if FINAL(s1) < FINAL(s2) then return(-1)
else if FINAL(sl) > FINAL(s2) then return(1);
for ¢ := FIRST_CHAR to LAST_CHAR do
if TRANSITION(sI,c) < TRANSITION(s2,¢) then return(-1)
else if TRANSITION(s1,c) > TRANSITION(s2,c) then return(1);
{ here we compare only the pointers }
return(0);
end; { COMPARE_STATES}

The ADT on Dictionary of automaton states uses the COMPARE_STATES
function above to compare states. For the dictionary we need the following opera-
tions: ’

1. function NEW_DICTIONARY : DICTIONARY returns a new empty
dictionary; '

2. function MEMBER(DICTIONARY,STATE) : STATE returns state in the

dictionary equivalent to the parameter state or NULL if not present;
3. procedure INSERT(DICTIONARY,STATE) inserts state to dictionary.

Implementations of the above ADTs can be found in {1]. Later we assume that
the time complexity of PRINT _AUTOMATON is proportional to the size of the au-
tomaton and all other operations on Automaton states including COPY_STATE,
CLEAR_STATE and COMPARE_STATES are performed in constant time. De-
pending on the concrete implementation of the dictionary, we could have different
bounds for the time complexity of the operations. Using a typical implementation
by, e.g:;, AVL balanced trees, we will have a logarithmic time complexity for the
MEMBER and INSERT operations and the size of the dictionary will be propor-
tional to the number of its elements.

Now we are ready to present the pseudo-code of our algorithm.

Algorithm 1. For on-line construction of minimal automaton presenting the
input list of words given in lexicographical order.

program Create_ Minimal_FS_Automaton_for_Given_List (input, output);
var |

MinimalAutomatonStatesDictionary : DICTIONARY;

TempStates : array (0. MAX_WORD_SIZE] of STATE;

InitialState : STATE;

Previous Word, CurrentWord : string;

i, PrefizLengthPlusl : integer;

-1 O Ot S 0D =
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function FindMinimized ( s : STATE) : STATE;
{ returns an equivalent state from the dictionary; if not present —
inserts a copy of the parameter state to the dictionary and returns it}
var r: STATE:
begin ' '
r := MEMBER(MinimalAutomatonStatesDictionary,s);
if r = NULL then begin
r:= COPY_STATE(s);
INSERT(r);
end;
return(r);
end; { FindMinimized}

begin
MinimalAutomatonStatesDictionary := NEW_DICTIONARY;
for : := 0 to MAX_WORD_SIZE do
TempState[s] :== NEW_STATE;
PreviousWord := 7

CLEAR_STATE( TempState[0]);

while not eof(input) do begin
{loop for the words in the input list}
readln(input, Current Word);

{ the following loop calculates the length of the longest common}
prefix of CurrentWord and Previous Word}
1= 1;
while (i<length( CurrentWord)) and (i<length( Previous Word)) and
(Previous Word[i]) = CurrentWord[1]) do
1= 141,
- PrefirLengthPlusl := 1;

{ here we are minimizing the states of the last word }
for i := length(Previous Word) downto PrefizLengthPlus! do
SET_TRANSITION( TempStates|:-1], Previous Word[4],
Find Minimized( TempStates[i]));
~{ this loop initializes the tail states for the current word}
for 1 := PrefizLengthPlus] to length(CurrentWord) do begin
CLEAR_STATE( TempStates[1]);
SET_TRANSITION( TempStates[i-1}, Current Word[1),
TempStates(i]);
end;
SET _FINAL( TempStates{length( Current Word)], true);

PreviousWord := CurrentWord,
end; { while}



44 { here we are minimizing the states of the last wbrd}

45 for 1 := length( CurrentWord) downto 1 do

46 SET_TRANSITION( TempStates[i-1], Previous Word(1],
FindMinimized( TempStates{i)));

47 InitialState := FindMinimized( TempStates[0});

48 PRINT_AUTOMATON(output, InitialState);

49  end. :

Now we will prove the correctness and calculate the time and space complexity
of the algorithm.

Theorem 13. Given a lexicographically sorted list of words in the input file,
Algorithm 1 builds the minimal FS automaton for the list and prints il out on the
output file.

Proof. To prove the theorem, we carry out an induction on the words of the
input list. :

In lines 20-24 the algorithm initializes the Dictionary of states of the minimal
automaton to the empty dictionary and the temporary states. In line 24 Temp-
state[0] is initialized to a non-final state with no transition. This corresponds to
the automaton for the empty language. Line 27 reads the first word from the input.
Because of the initialization in line 23, we have that at that moment Previous Word
is the empty string. Hence PrefizLengthPlusl will be set to 1 in lines 29-32. The
loop in lines 33—-35 will not be triggered and the loop 36-40 will construct a chain
of states for recognizing the first word. In this way the algorithm constructs the
minimal automaton for the language consisting of the first word in the input list.
Clearly, this automaton is also minimal except for the first word wM. In that
moment the automaton is minimal except for w(!) and the states to,ty,..., 1 are
presented in Tempstate. In line 42 the first word is assigned to the string Previous-
Word.

Now we will show that the loop in lines 25-43 adds the next word from the list
to the automaton and produces a minimal except for this word automaton.

Let us assume that on stage j the algorithm has built the automaton recog-
nizing {w(¥) | i = 1,2,...,j — 1}, which is minimal except for wl=1_ The states
to,t1,...,tx are presented in the array TempStaies, all other states of the automa-
ton are in MinimalAutomatonStatesDictionary and PreviousWord is w1,

Being in line 27, the word w(/) is read from the input file into Current Word.
The loop 28-32 calculates the longest common prefix of PreviousWord and Cur-
rent Word with values at that moment wU=1) and w(). We will show that the loop
33-35 builds the equivalent automaton minimal except for the longest common pre-
fix of w@=1 and wU), In downward order the transition to the state ¢; is replaced
by a transition to the state which returns the function FindMinimized, where i
varies from the length of PreviosWord to PrefizLengthPlusl in reverse order. The
function FindMinimized searches a state equivalent to the argument in MinimalAu-
tomatonStatesDictionary. Here the conditions of Lemma 12 are fulfilled, therefore
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the use of COMPARE_STATE in the function MEMBER will identify the equiv-
alent to ¢; state. If such a state exists, it is returned as result. This corresponds
to the condition of Lemma 10. In the other case, the function copies the state
and inserts it into MinimalAutomatonStatesDictionary. The copy of the state is
returned as result. This corresponds to Lemma 9. According to those lemmata, in
both cases the new automaton will be equivalent to the former and minimal except
for the shorter prefix. After finishing the loop, we have an automaton recognizing
{w® | i=1,2,...,5 — 1}, which is minimal except for the longest common prefix
of wl =1 and wl),

The loop 36-40 simply constructs a tail of states in the array TempStates in
order to recognize CurrentWord. In line 41 the last state is marked as final. This
corresponds exactly to the conditions of Theorem 11. Therefore we have built the
automaton for the language {w() | i = 1,2,...,j} minimal except for the word
w) . After assigning w) to PreviousWord in line 42, we are closing the main loop.

From the induction we have that after finishing the loop 25-43 the algorithm
will build the automaton for the input list which is minimal except for the last
word. The lines 44-47 in the same way as the loop 33-35 build the equivalent
automaton which is minimal except for €. From Proposition 8 we have that this is
the minimal automaton for the list. Line 48 prints the automaton on the output
file. O

Theorem 14. Algorithm 1 builds the minimal automaton for a given alpha-
betically sorted list of words in O(nlog(m)) time, where n is the total number of
letters in the input list and m 1s the size (number of states) of the resulling minimal
automaton. The space complezity of Algorithm 1 is O(m).

Proof. For each letter from the input list the algorithm passes either through
line 31 or through lines 38-39. Each of the statements of those lines are performed
in constant time. In case we have passed through the lines 38-39, we later have to
pass through line 35 or 46. The time complexity of the lines 35, 46 depends on the
time complexity of FindMinimized. By using balanced tree implementation of the
dictionary we have that the complexity of FindMinimized is logarithm of the size
of the dictionary. The dictionary has at most m elements, where m is the number
of the states of the minimal automaton for the list. Hence the time complexity of
the whole algorithm is O(n log(m)).

Clearly, the space needed by the algorithm is equal to the size of the dictionary
of states of the minimal automaton plus the size of the TempStates array plus the
constant size of the other fixed-size variables. TempStates is proportional to the size
of the longest word in the list and in the case of using balanced tree implementation,
the size of the dictionary of states of minimal automaton is proportional to the
number of states of the minimal automaton. Clearly, the size of the longest word
in the list is lower than the size of the minimal automaton representing this list.
Therefore the space complexity is O(m). O

The main advantage of our method is the excellent space to time proportion.
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4. ALGORITHMS FOR DIRECT CONSTRUCTION
OF MINIMAL AUTOMATON PRESENTING UNION, INTERSECTION
AND DIFFERENCE OF ACYCLIC AUTOMATA

The standard methods for construction of automaton presenting union, in-
tersection and difference are building first a temporary automaton which states
are Cartesian product of states of the input automata. This temporary automa-
ton in general is huge with respect to the resulting minimal automaton. Here we
will present a new method for direct constructing the minimal automaton which
drastically improves the efficiency.

By traversing an acyclic deterministic FS automaton in depth first by choosing
the transitions in lexicographical order we can produce the automaton language in
lexicographical order. Using this property, we can produce the lexicographical
ordered list which is union, intersection or difference of the languages of the input
automata. Using this list as input for Algorithm 1, we can construct directly the
minimal automaton for the union, intersection and difference. Moreover, we do not
have to build explicitely the whole lists in the memory. We can proceed word by
word using only the top words of the lists. Bellow we give the formal description
of our algorithm.

We will need the following declaration:

type States_Stack = array [1.MAX_WORD_SIZE+1] of STATE — type
array of automaton states.

We will use array of states for representing automaton path. If we have a word
w: string, we will have S[i+ 1] = TRANSITION(S[i], w(t]), i = 1,2,...,lenght(w),
where S{0] is the initial automaton state.

For producing the language of an automaton word by word, we will use a
function which for a given word and corresponding path returns the next word in
lexicographical order in automaton language. '

Algorithm 2. Given a word and a corresponding automaton, path returns
the next word in lexicographical order in the automaton language.

We will assume that from any automaton state a final state is reachable.

function NEXT_AUTOM_WORD(S : States_Stack; var w : string) : boolean;
var

¢ : char;

sp : integer;

function FIND_FORWARD_WORD : boolean;
begin
¢ := FIRST_CHAR;
while (¢c<=LAST_CHAR) and (TRANSITION(S[sp|,¢) = NULL)
do ¢ := succ(e); |
if c>LAST_CHAR then return(false);
S[sp + 1} := TRANSITION(S[sp], c);
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sp:=sp+1;

w := concat(w, ¢);

while not FINAL(S[sp]) do begin
¢ := FIRST_CHAR,
while TRANSITION(S[sp],¢) = NULL do ¢ :=succ(c);
S[sp + 1] := TRANSITION(S[sp], ¢);

sp = sp+1;

w := concat(w, ¢);
end; '
return(true);

end;
begin

sp := length(w);
if FIND_FORWARD_WORD then return(true);

repeat .
if sp = 1 then return(false);
 spi=sp—1; '

¢ := wllength(w)];
delete(w, length(w), 1);
while (c <= LAST_CHAR) and (TRANSITION(S[sp],c) = NULL)
do ¢ := suce(c);
until ¢ <= LAST_CHAR;
S[sp + 1] := TRANSITION(S[sp], c);
sp:=sp+1;
w := concat(w, c);
if not FINAL(S[sp])
then return(FIND_FORWARD_WORD) else return(true);
end;

Theorem 15. For a given word and a corresponding automaton, path Algo-
rithm 2 finds the next word in lezicographical order in the automaton language and
returns irue or returns false in case there are no more words.

We can proof the above theorem by induction on the words in the antomaton
language.

We will use the above function for producing the lexicographically sorted list
representing the union, intersection and difference of automaton languages.

Algorithm 3. For producing the next word in lexicographical order of the
union of two acyclic automaton languages.

We shall need the following global variables:
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var
pl, p2, f1, f2 : boolean;
sl, s2: States_Stack;
wl, w2 : string;

We shall assume that they are initialized by the following procedure:

procedure INIT_NEXT_WORD;

begin
s1{1] := init_statel;
s2[1] = init_state2;
wl ="
w? ="
pl ;= true;
p2 .= true;
f1 := true;
f2 := true;
end;

intl_statel, init_state2 are the initial states of the two automata. In that case the
function NEXT_WORD produces in the variable w the next word in lexicographical
order of the union list or returns false in case there are no more words.

function NEXT_WORD(var w : string) : boolean;
begin
if not f/ and not f2 then return(false);
if p/ then f1 := NEXT_AUTOM_WORD(s!,wl);
if p2 then f2 := NEXT_AUTOM_WORD(s2,w2);
if not fI and not f2 then

return(false) .
else if (fI and f2) and (w! = w?2) then begin
w:=wl;
pl := true;
p2 .= true;
end else if not fI or ((f7 and f2) and (w! > w2)) then begin
wi= wl; :
pl := false;
p2 := true;
end else if not f2 or ((f/ and f2) and (w! < w2)) then begin
w = wl,
pl = true;
p2 = false;
end;
return(true);

end;
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The function NEXT_WORD proceeds as follows: in the variables p1, p2 we
mark the necessity for reading the next word from the corresponding automaton.
In the variables f1, f2 we mark the ending of the corresponding automaton. In case
both automata are traversed, the function returns false. In the other case the two
current words from the automata lists are compared. In case the words are equal,
we return one of them and mark in p/, p2 that on the next call of the function the
words from both lists have to be read. In case one of the words preceeds the other,
we return that word and mark the corresponding automaton in order to read the
next word from it. In casé one of the automaton languages has finished, the other
is listed until both are finished.

We have to note that the function NEXT_WORD returns word by word the
list of the words in the union of the two input automata without using any extra
memory for generating the lists. The time for listing the words in the union is
proportional to the sum of the lengths (in letters) of the languages of the input
automata. This follows from the next facts. To hst the words, in the union the
paths are traversing from the initial to the final states in the input automata. The
sum of all those paths in an automaton is equal to the number of all letters in the
automaton language. U

For producing the list of the intersection or difference of two automata, we
proceed similar to the method above. But we shall present a more efficient method
which is applicable also in case the second automaton is not acyclic.

First we present an additional function which returns true in case the word is
recognized by the automaton and false otherwise.

function RECOGNIZE_WORD (w: string; s: STATE) : boolean;
var 1 : integer;
begin
1= 1;
while 1 <= length(w) do begin
' if TRANSITION(s, w(i]) = NULL then return(false);
s := TRANSITION(s, w(i});

| =1+ 1
end;
return(FINAL(s))

end,

The funé-tionality of the above function is clear. We have only to note that the
recognition time for a word is proportional to the length of the word.

Algorithm 4. For producing the next word in lexicographical order of the
intersection of an acyclic deterministic FS automaton with a deterministic FS au-
tomaton language.

We shall need the following global variables:

var
f1: boolean;
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sl : States_Stack;
wl : string;

We shall assume that they are initialized by the following procedure:

procedure INIT_NEXT_WORD;

begin
s1[1] := inil_statel;
Cwl o=
fl := true;
end;

tnif_statel, init_state? are the initial states of the two automata. In that case the
function NEXT _WORD produces in the variable w the next word in lexicographical
order of the intersection list or returns false in case there are no more words. -

function NEXT_WORD(var w: strmg) boolean;
begin
if not fI/ then return(false);
repeat
f1:= NEXT_AUTOM_WORD(s1, wl);
until not f/ or RECOGNIZE_WORD(wl, init_state2);
if not fI/ then return(false);

w:= wl;
return(true);
end;

In that case the function NEXT_WORD proceeds as follows: word by word
the first automaton language is listed in lexicographical order. In case the current
word is recognized by the second automaton, this word is returned as the next word
in the intersection. '

- Here we have to note that the function NEXT_WORD produces the intersec-
tion list word by word without using extra memory for generating the whole lists.
The time for producing the intersection hist is obviously proportional to the number
of all letters in the first automaton. (J _

For deriving an algorithm producing the next word from the difference of an
acyclic deterministic FS automaton with a deterministic FS automaton, we have
to make in the above algorithm the following change:

until not fI or RECOGNIZE_WORD(wl, init_state?2);
have to be exchanged with
until not fI or not RECOGNIZE_WORD(wl, inil_state?);

There will be almost no changes in the functionality of the algorithm and the time
complexity for producing the difference list will be again proportional to the number
of all letters in the first automaton language.

Let us present now the algorithm for direct construction of minimal automaton.
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Algorithm 5. For direct construction of minimal automaton presenting the
union, intersection or difference of acyclic automaton languages. (In case of inter-
section and difference, only the first automaton has to be acyclic.)

We shall use as base Algorithm 1. We assume.that the global variables
init_statel, tnit__state2 are given, which represent the initial states of the first
and second automaton. We shall assume also that the global variables of Algorithm
3 or Algorithm 4 and the corresponding functions NEXT_AUTOM_WORD,
NEXT_WORD, INIT_.NEXT_WORD, RECOGNIZE_WORD are defined. We
need further the following changes of Algorithm 1:

1. Between lines 24 and 25 we have to call the initialization procedure
INIT_NEXT_WORD;

2. Line 25 has to be changed to
while NEXT_WORD(CurrentWord) do begin.

3. Line 27 has to be deleted.

The only difference between the above algorithm and Algorithm 1 is the use
of an input list which presents the union, intersection or difference of the input
automata. We derive the following complexity results. For the union the time
complexity of Algorithm 5 is O((ny +n2)+nlog(m)), where n;, ny are the number of
letters of the two input automata languages, n is the number of letters in the union
language and m is the size (number of states) of the resulting minimal automaton.
We obviously have that n;+ny < 2n, hence the time complexity is O(n log(m)). For
the intersection and difference we have that the time complexity is O(n;+n log(m)).
The memory complexity in all cases of Algorithm 5 is O(m). O

5. IMPLEMENTATION RESULTS AND COMPARISONS

We have implemented various tools for constructing, updating and processing
of lexicons presented as minimal automaton. They are programmed in GNU-C and
JAVA. For a more efficient implementation we have used an open hash structure
for the lexicon of automaton states presentation. This provides a nearly linear time
complexity for practical applications.

We have experimented with grammatical lexicons for Bulgarian and Russian
languages. The middle-sized lexicon for Bulgarian common lexica has about 500000
wordforms and the Russian one — about 1500000 wordforms. They are encoded
according to the DELAF format [5). To provide additional grammatical information
to the words, we have used a FS automaton with labels on the final states. A trivial
change is needed to modify Algorithm 1 to build minimal automata with such labels.
In the INTEX system (5] there is a similar tool for building the same kind of FS

1

1 The DELAF format of the Russian lexicon is build in cooperation with the Computer

Fond of the Russian Language in Moscow. s

102



Table 1. Comparison of our and the INTEX tool for building minimal automata

INTEX tool our tool

Bulgarian | Size (Wordforms) 524473
lexicon Memory used 33450 KB 1660 KB
Time needed - 2:07min | 0:29 min

Russian Size (Wordforms) 1486552
lexicon Memory used 129000 KB 4400 KB
Time needed 17 min 2:04 min

automata. This tool is a highly efficient implementation of the Revuz’ algorithm.
Table 1 shows a comparison between our tool and the corresponding INTEX tool.

All time and memory parameters given in the paper are measured on a 32MB
RAM Pentium 180 machine running under NEXTSTEP. The large time require-
ments of the INTEX tool for the Russian lexicon are explained with the heavy usage
of virtual memory. On a small lexicon (when the trie structure for the INTEX tool
fits into the operating memory) our tool is only slightly faster than the INTEX
one.

6. CONCLUSION

The presented methods and algorithms are successfully used for construction
and operations on large scale dictionaries. They are distinguished with significantly
better memory efficiency than the others.

An open question is the existence of a method for direct construction of minimal
automaton presenting the concatenation of acyclic automaton languages. There
seems to be a problem producing the concatenation list lexicographically sorted.
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