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In this paper we give a construction of a family of Baer subplanes of the Hughes plane
H of odd square prime order ¢2, ¢ > 5, which are not isomorphic to its well-known
desarguesian Baer subplane Hy [1, 5.4].
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1. DEFINITION AND MAIN PROPERTIES OF THE HUGHES PLANES

We recall the well-known properties of the Hughes plane H over an arbitrary
regular nearfield R of odd square prime power order g% [1]:

a. H is a projective plane of odd square prime power order ¢?, and it is of
Lenz—Barlotti type 1.1 [1, 5.4]. ' '
b. Let P := {P = (z1,z2,23)R, zi € Z(R), i = 1,2,3}; T := {all the rest

points}; L(1) := {L), i = 0,1,2,...,r = 1}; L(t) := {L}', t € R\ Z(R), i =
0,1,2,...,r—1}. '

Then the points in the set P together with the lines joining them (that are the
lines of the set L(1)) form a desarguesian Baer subplane Hy of H.

c. The projective group of Hy is faightfully induced by the collineation group
I' = GL3(gq) (GL3(g) is the group of nonsingular (3,3)-matrices with elements in
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Z(R) = GF(q)). Every central collineation of Hy extends to a central collineation
of HinT.

d. The full collineation group G of H has two points — P and 7', two lines —
L(1) and L(t), and two flag orbits. Also, G is a semidirect product I'. Aut R; this
product is direct iff ¢ is prime (1, 5.4].

Further we .consider the case when ¢ is an odd prime > 5 and we use the
notation F = GF(q). Let f = 22 —a be an irreducible polynomial over F. Then one
can describe the quadratic extension ® = GF(¢?) of F as follows: ® = {az+b, a,b €
F, z — aroot of f}. .

Let @ be a primitive element of ®. Then &* = @&\ {0} = &5 U &y, where &g
(@) 1s the set of squares (nonsquares) in @, i.e. s = {u:u € @, u= 9% ke N}
and & = {u:u € &, u =62+ [ e N}.

Let K be the regular nearfield of order ¢? with the same elements as ®, in
which the addition is the same as in ®, while the multiplication, denoted by o, is
defined as follows: wou = uw if u € &5 and wou = uw? if u € dy [2].

Since a? = « for each a@ € F', we have a o u = au when a € F and u € K. It
is known that the centre Z(K) is just the field F.

Let H = H(K) be the Hughes plane over K. The points of H are all ordered
triples P = (21,22, 23) = (21,23, 23) 0k = (z10k, 220k, 2z30k), k € K* = K\ (0),
r; €K, 1=1,2,3, and (z;, 23, 23) # (0,0, 0).

The theorem of Singer [3] gives us the existence of a transformation

3 3 3
(z1,2,23) = (Z a1jT;, Y az;z;, ) asj-l'j), a;j € F,
j=1 7j=1 j=1

such that the mapping (21, 23, 23) = P + AP = (a11z1, . .., a3sz3) is a collineation
v of order r = ¢? + ¢ + 1 of the desarguesian plane 7(q) of order q over the field F.

The basic lines L of H are defined by the equations
Ly izy+tozy+z3=0, te{®\FuU{l}. (1)
The point P = (21, z3,z3) o k is incident with the line L, iff the triple (21, z, z3) is
a solution of (1). The remaihing lines of H are L;’i, i=0,1,2,...,r—1, and A'P
is incident with L}, i = 0,1,2,...,7 — 1, iff P is incident with L¢ [2].

2. AUTOMORPHISMS OF THE NEARFIELD K = K(¢?)

It is quite evident that the automorphism group Aut K is isomorphic to Z,.
[ndeed, on the one hand, [AutK| < 2 [1, 5.2.2]. On the other hand, it is easy
to check that the mapping ¢ : K — K, defined by the correspondance az + b
(az+b)° = —az +b, is a nontrivial automorphism of K, usually called conjugation

in K.
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3. THE MAIN RESULT

Let x = x(S,L) be an arbitrary homology of order two of H with centre S and
axis L (since o(x) = 2 and ¢ is odd, S is not incident with L). Actually, S € P and
L € L(1). :

From 1.c, d and 2 it follows that there exists a collineation ¢ = o, where
o € AutK, ¢ # id. That gives us a reason to investigate the geometry of the
¥-invariant points and lines of H. The main result in this paper is the following
statement: '

Theorem. The -invariant points and lines of H form a Baer subplane m =
7(S,L) of order ¢ of H, non-isomorphic to the subplane Hy. '

Since the group AutK is flag-transitive, it is sufficient to prove the theorem in
the case when the homology x has as an axis the line L; : 2y + 22+ 23 = 0 and as
a centre an arbitrary point S € P which is not incident with L;.

Let x* be an arbitrary homology of H with centre S = (a, b,¢) (a,b,c € F) and
axis L;. Then the action of x* over the points of H can be presented as follows:

X" 2ok =A%z, ke K\({0},

where the column vector Z = (z1, 3, £3)" is an arbitrary point of H, #’ = (2}, 25, 23)"
is its image under x*, and the matrix A* € GL3(g) has the form '

[a+p a a
A" = ( b b+ p b ) ,
c c c+p

where p € F. Let us point out that a + b+ ¢ # 0 since S is not incident with L.

We denote by 2 the element 1+ 1, where 1 is the unit element of the multipli-
cation in F (and, respectively, in K). Since the characteristic of F is odd, 2 # 0.
Then the homology x = (S, L) of order two with centre S = (a,b,c) and axis the
line L; is defined by the matrix

2972(a—b—c) a a
A= b 29-2(b—a—c) b .
¢ ¢ 29"2(c—a—b)

If the collineation ¥ fixes some quadrangle (four points, no three of which are
incident with one and the same line) pointwisely, then ¥ maps to itself some proper
subplane of H. We will show that there exist four points, no three of which are
incident with one and the same line, and which are invariant with respect to .

The v-invariant points and lines are exactly these, which the homology x maps
onto their conjugated ones, respectively. With the line L; are incident precisely g+1
different points of the orbit P. Obviously, these points together with the centre
of ) — the point S = (a,b,c) — are invariant with respect to the collineation %.
If the t-invariant points and lines of H form a Baer subplane, then every point
of the supposed subplane will be incident with exactly ¢ + 1 different y-invariant
lines. Since all basic lines L;(1) are incident with the point P; = (~1,0, 1), one can
expect that there exist ¢ + 1 y-invariant ones among them. That is why we have
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to find the number of lines L,(1), which are mapped under the homology of order
two x = x(S,L,) in their conjugated lines Lo = (L;)?, respectively.

Let Ly # Ly, Ly : 2, +tozg+23 = 0,1 € K\F. Since the line L; is different from
the line y = 0, an arbitrary point T, not incident with L,, T # P, has coordinates
(z1,1,—(z1 +1)), z1 € K. Then x(T) = T’, where T = (29" 2(a — b — ¢)z; + a —
a(z;+1),2973(b—a—c)—bt,czy +c—29"%(c—a—b)(z; +1)). Therefore x(L¢) = Lj,
L; = P;T' and the element ¢’ € K \ F is uniquely determined by the equation

t'o(m+bt) = 2m + b — mt, (2)

where m = 297%(a — b+c). Hence m € F and m depends on the coordinates of the
centre S = (a, b, ¢) only. |
Now we will find the number of distinct solutions of the equation (2) when
t' =17, It is conveniant to consider two cases with respect to b: b=0 and b # 0.
Case 1. Let b=0,1.e. S =(a,0,c). In this case the equation (2) is of the form

| mt' = m(2 —1). (3)

Here m = 27%(a+c) and since S is not incident with Li,a+c#0,ie. m#0.
Therefore m=* € F* and (3) yields that
: t'=2-1t. (3"

In general, each t € K\ F is of the foormt =dz+e¢,d € F*, e € F. As it was

mentioned above, we are looking for the solutions of (3') when ¢/ = {7, i.e. when
t' = —dz + e. Then from (3’) we obtain that

~dz+e=—-dz+2~e. (3")

Hence d is an arbitrary element of F* and e = 1. These solutions give us exactly
q — 1 distinct Ly-lines (t = dz+ 1, d € F*), which are mapped under the homology
X in their conjugated ones, respectively.

Case 2. Let b # 0, ie. S = (a,1,¢). Now from (2) we have the following

equation when t7 = t', namely
to(m+1t)=2m+1—mt. (4)
Here m = 277 %(a+c— 1) and since a+ 1+ ¢ # 0, m # —1. As t has the

representation ¢ = dz + ¢, so that 7 = —dz + ¢, d € F*, e € F, the relation (4)
immediately gives :

(—dz+e)o(dz+m+e)=—mdz+2m—me+1. (4")

For the result of multiplication in the left-hand side of (4') we have two possi-
bilities, namely,

(=dz+e)(dz+m+e) ifdz+m+e€ds,

(-_dz+e)o(dz+m+e)={(d2+e)(dz+m+e) ifdz+m+e€¢N

If we assume that dz + m + e € ®y, then for d and e we have from (4’) that
(m+ 2e)dz + d*2* + e(m + €) = —mdz + 2m + 1 — me. Since 2% = a, we obtain

(m+ 2e)dz + ad® + e(m + €) = —mdz + 2m + 1 — me. (4"

68



Hence e = —m, ie. € # 1, and d?a = (e — 1)?, i.e. d # 0. Therefore
o = [d~'(e—1))?, i.e.  is asquare in the field F, but this contradicts the choice of
a. Therefore, if there exists a solution of the equation (4), then dz2 + m + ¢ € ®5.
Suppose that dz +m +e € 5. Now (4') is reduced to

ad? = e? + 2me — 2m — 1. (4"

We transform the right-hand side of (4") as follows: e? + 2me —2m — 1 =
e2 4+ 2me+m? —m? —2m — 1 = (e + m)? — (m + 1)%, and then (4"’) becomes

(—a)d? + (e + m)* = (m+ 1)?, (5)

where m # —1 is a fixed element of F and a = z2.

Let n be a quadratic character ofGF(q) (g — odd), i.e. n(c) =1 1fc is a square
in GF(q) and n(c) = —1 if ¢ is a nonsquare in GF(q). Define the functlon von GF(q)
by v(b) = —1 if b € GF*(g) and v(0) = ¢ — 1. Let N(a1y} + 293 = b) (be GF(q)
ay, s € GF*(g)) be the number of the solutions of the equation oy + agyl = b
in the field GF(g). Then [4, 6.24]

| | N(anyi + azys = b) = ¢ + v(b)n(—araa).

In the case of the equation (5) in the variables y; = d and y2 = e + m we have
@) = —a, az = 1 and b = (m + 1)2. Since m # —1 and « is a nonsquare in GF(q),

v((m + 1) ) = —1 and f(—ajas) = n(a) = —1. Therefore N((—a)d? + (¢ +m)? =
(m+1)%) =¢+1L

The solution (0, 1+ m) of the equation (5) gives the line L; and to the solution
(0,—2m — 1) = (0, —(a + ¢)) corresponds the line SP; : 21 — (a + c)z2 + 23 = 0,
SP, € L(l)

For each of the remaining g — 1 solutions (d, e + m) of the equation (5) we will
prove that dz+(m+e¢) € ®s. Suppose that (d;, e +m) is a solution of (5) such that
u=dyz+(m+e) € Oy, ie u=0* Thenuou=uu! = (—a)d?+(er +m)? =
(m+1)2, ie 9UFHLEHD) = (m+ 1)2, and therefore l(a* - D/ACHD) = (m41)1-! =

1. But, on the other hand, l(¢"=1D/221+1) — (_1)2+1 = _1. It turns out that
1 = —1, which contradicts the oddness of the characteristic of the field F = GF(g).
Therefore every solution (d, e + m) of the equation (5) with d # 0 gives an element
w = dz + (m + ¢) € ®s. That means there exist exactly ¢ — 1 distinct basic lines
'L; ( # L) invariant with respect to the collineation .

Now it is easy to find y-invariant points, no three of which are incident with
one and the same line. Let P; € P, i =1,2,3, be three different points which are
incident with the axis L, of the homology of order two x = x(S, L;) and differ from
the point (—=1,0,1). Then the points S, Py, Py, T = SP3 N L; have the desired
property, L; is an arbitrary invariant with respect to the ¢ basic line different from
L, and S = (a, b,¢) is the centre of x.

Hence for any point S € P and any line L € L(1), S non-incident with L, the
points and lines of H invariant with respect to the collineation ¥ = o form a Baer
subplane m = w(x) of H of order ¢ (x is the homology of order two w1th centre
S and axis L, 0 € AutK, ¢ # id). It is clear that this subplane 7 = 7r(x) 1s not
isomorphic to the well-known Baer subplane Ho of H with respect to the group
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Aut H. Otherwise there exists an element ¢ € Aut H such that #(Po) = Ty, where
Py and Ty are arbitrary points from the orbits P and T, respectively. Hence Aut H
acts transitively over the set of all points of H, which is inadmissible in any Hughes
plane.

It is naturaly to ask whether the subplanes of the kind 7 = 7(x) are isomorphic
to each other with respect to the automorphism group of the plane H. We claim
that the answer of this question is positive.

Let S; and S be arbitrary points of P and L!, L? be lines of L(1), S; be non-
incident with L* (i = 1, 2). Denote by x; the homology of order two with centre S;
and axis L* (7 = 1, 2). Let m; = m;(x;) be the subplane generated by the collineation
Yi = ox; (1 = 1,2). If there exists an element ¢ € Aut H such that #(S1) =S, and

¢(L') = L?, then ¢(my) = my.

. Due to the fact that the group Aut H is flag-transitive, it is sufficient to consider
only the case when the axis of x; and x3 is the line L; : £y + 22+ 23 = 0, the centre
S1 of x; has coordinates (1,0,0), and the centre S, of x3 is an arbitrary point from
the orbit P non-incident with L;. Then S has coordinates (a,b,¢), a,b,c € F and
a+b+c#0. .

In order to prove that the subplanes 7; = 7(x;) and 7 = 7(x2) are isomorphic,
it is sufficient to show that there exists an automorphism ¢ € Aut H which maps
certain quadrangle of 7; into a quadrangle of 7.

In the case when S; = (a,0,b), the points S;, S and P; = (-1,0,1) are
incident with the line 2o = 0. Then the isomorphism between the subplanes m
and 7y is realized by the elation ¢; = €,(Py,L;) with centre P; = (—1,0,1), axis
L; and €(S;) = Sz. It is obvious that in this case both subplanes 7, and 7 contain
the lines of the form L; : ) +tozy + 23 =0, where t =dz+ 1, d € F*.

Let the points P; # P3 be in the orbit P, P, and P3 be incident with L,
. and suppose that P, # Py and P3 # P;. The line S;P; intersects an arbitrary
line Ly, € m, t; = dyz+ 1, di € F* at a point Ty € m;, and the line SoP,
intersects the same line L, € m, at a point T, € 7. Then the points S;, P,,
Pz, T, form a quadrangle in 7, and the points Sy, Py, P3, Ty — quadrangle
in 7. Since the point P; is incident with all the lines L, €1(L:) = Ly, hence
€1(S1, P4, P3, T1) = (Sa, Py, P53, Ty), which gives us that (™) = Ty :

Let S = (a,1,¢). Since Sy is non-incident with Ly, a+c+ 1 # 0 and the
line §,S; intersects the line L; at the point P12 = (=1 — ¢, 1,¢). Similarly, the
isomorphism between the subplanes m; and m, is realized by the elation ¢, =
€2(P12,L;) with centre P2, axis L; and £2(S;) = S,. This elation is given by the

matrix
a -1-c¢ o
B:(l a+c+2 1 )
c c a+2c+1

Actually, we have that each point G; € 7 which is incident with the line S; P,
is mapped under the elation €, into a point G, € w5 which is incident with the line

SoP;.
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The homology of order two x1 = x1(S1,L1) with centre S; = (1,0,0) is given

by the matrix
29-2 1 1
C = 0 ~29-2 0 .
0 0 ~21-2

The line S;P; € L(1) has an equation £ = 0 and therefore it differs from
the line z3 = 0. Then each point G # S; which is incident with the line S; P
has coordinates (dz + €,0,1), d,e € F. The point G belongs to the subplane
iff ¥1(G) = o(G). Hence the points Gy of my, incident with the line 5;Py, have
coordinates (dz — 1,0,1), d € F (when d = 0, G, = P1).

The homology of order two x2 = x2(S2,L1) with centre S; = (a,1,c) and axis
L; is given by the matrix .

2" %(a—c—1) a a
D= 1 20-%(-1—-a—c) 1 ) :
c ¢ 29"%(c—a—1)

The equation of the line SoPy € L(1) is z; — (a + ¢)z2 — 3 = 0 and it is easy
to sece that the points Gy € ma, which are incident with S2P3, have coordinates
(dz+a,1,—-dz+c),d €F. ‘

We have £(G1) = G, where the coordinates of the point G’ are (adz —(a+¢+
1),dz,cdz+ (a+c+1)),a+c+1#0. If d# 0, then the point G’ has coordinates
(adz—(a+c+1),dz,cdz+ (a+c+1))o(dz)™", that is G' = (—(a+c+ 1)(dz)"* +
a,1,(a+c+ 1)(dz)~! 4 ¢). Since (dz)™' = dz, G' = (d* + a,1,~d" + ¢), where

= —(a+c+1)d, d* € F*.

Ifd=0,then Gy =P, =G = (—(a+c+1), 0,(a+ ¢+ 1)). Hence G’ is
incident with SoP; and G’ € m».

Let P be an arbitrary point in the orbit P, let P be incident with the line L;
and P; # P # Pj5. That is why the point P belongs to the subplane m; as well
as to the subplane 7. Then the elation €3 = €2(P12,L;) maps the quadrangle
(P12,P,S;,Gy) of m onto the quadrangle (P12,P,5;,G2 = Gof my (S1 #G1 #
P:2, S, # Ga # P12).

In this way we have proved that the subplanes w; and 7, are 1somorph1c with
respect to the automorphism group of H.
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