ГОДИШНИК НА СОФИЙСКИЯ УНИВЕРСИТЕТ "СВ. КЛИМЕНТ ОХРИДСКИ"

ФАКУЛТЕТ ПО МАТЕМАТИКА И ИНФОРМАТИКА Книга 1 — Математика и механика Том 92, 1998

ANNUAIRE DE L'UNIVERSITE DE SOFIA "ST. KLIMENT OHRIDSKI"

FACULTE DE MATHEMATIQUES ET INFORMATIQUE Livre 1 — Mathématiques et Mecanique Tome 92, 1998

ON THE SUBPLANES OF THE HUGHES PLANES OF ODD SQUARE PRIME ORDER

ASSIA ROUSSEVA

In this paper we give a construction of a family of Baer subplanes of the Hughes plane **H** of odd square prime order q^2 , $q \ge 5$, which are not isomorphic to its well-known desarguesian Baer subplane **H**₀ [1, 5.4].

Keywords: finite geometries, Hughes planes, Baer subplanes

1991/95 Math. Subject Classification: 51E15

1. DEFINITION AND MAIN PROPERTIES OF THE HUGHES PLANES

We recall the well-known properties of the Hughes plane H over an arbitrary regular nearfield R of odd square prime power order q^2 [1]:

- a. H is a projective plane of odd square prime power order q^2 , and it is of Lenz-Barlotti type I.1 [1, 5.4].
- b. Let $P := \{P = (x_1, x_2, x_3)R, x_i \in Z(R), i = 1, 2, 3\}; T := \{\text{all the rest points}\}; L(1) := \{L_1^{\gamma^i}, i = 0, 1, 2, ..., r 1\}; L(t) := \{L_t^{\gamma^i}, t \in R \setminus Z(R), i = 0, 1, 2, ..., r 1\}.$

Then the points in the set P together with the lines joining them (that are the lines of the set L(1)) form a desarguesian Baer subplane H_0 of H.

c. The projective group of H_0 is faightfully induced by the collineation group $\Gamma = GL_3(q)$ (GL₃(q) is the group of nonsingular (3,3)-matrices with elements in

Z(R) = GF(q)). Every central collineation of H_0 extends to a central collineation of H in Γ .

d. The full collineation group G of H has two points — P and T, two lines — L(1) and L(t), and two flag orbits. Also, G is a semidirect product Γ . Aut R; this product is direct iff q is prime [1, 5.4].

Further we consider the case when q is an odd prime ≥ 5 and we use the notation F = GF(q). Let $f = z^2 - \alpha$ be an irreducible polynomial over F. Then one can describe the quadratic extension $\Phi = GF(q^2)$ of F as follows: $\Phi = \{az+b, a, b \in F, z - a \text{ root of } f\}$.

Let θ be a primitive element of Φ . Then $\Phi^* = \Phi \setminus \{0\} = \Phi_S \cup \Phi_N$, where Φ_S (Φ_N) is the set of squares (nonsquares) in Φ , i.e. $\Phi_S = \{u : u \in \Phi^*, u = \theta^{2k}, k \in \mathbb{N}\}$ and $\Phi_N = \{u : u \in \Phi^*, u = \theta^{2l+1}, l \in \mathbb{N}\}.$

Let K be the regular nearfield of order q^2 with the same elements as Φ , in which the addition is the same as in Φ , while the multiplication, denoted by \circ , is defined as follows: $w \circ u = uw$ if $u \in \Phi_S$ and $w \circ u = uw^q$ if $u \in \Phi_N$ [2].

Since $\alpha^q = \alpha$ for each $\alpha \in F$, we have $\alpha \circ u = \alpha u$ when $\alpha \in F$ and $u \in K$. It is known that the centre Z(K) is just the field F.

Let H = H(K) be the Hughes plane over K. The points of H are all ordered triples $P = (x_1, x_2, x_3) = (x_1, x_2, x_3) \circ k = (x_1 \circ k, x_2 \circ k, x_3 \circ k), k \in K^* = K \setminus (0), x_i \in K, i = 1, 2, 3, and <math>(x_1, x_2, x_3) \neq (0, 0, 0)$.

The theorem of Singer [3] gives us the existence of a transformation

$$(x_1, x_2, x_3) \mapsto \left(\sum_{j=1}^3 a_{1j} x_j, \sum_{j=1}^3 a_{2j} x_j, \sum_{j=1}^3 a_{3j} x_j\right), \quad a_{ij} \in F,$$

such that the mapping $(x_1, x_2, x_3) = P \mapsto AP = (a_{11}x_1, \dots, a_{33}x_3)$ is a collineation γ of order $r = q^2 + q + 1$ of the desarguesian plane $\pi(q)$ of order q over the field F.

The basic lines L of H are defined by the equations

$$L_t: x_1 + t \circ x_2 + x_3 = 0, \quad t \in \{\Phi \setminus F\} \cup \{1\}.$$
 (1)

The point $P = (x_1, x_2, x_3) \circ k$ is incident with the line L_t iff the triple (x_1, x_2, x_3) is a solution of (1). The remaining lines of \mathbf{H} are $L_t^{\gamma^i}$, i = 0, 1, 2, ..., r - 1, and A^iP is incident with $L_t^{\gamma^i}$, i = 0, 1, 2, ..., r - 1, iff P is incident with L_t [2].

2. AUTOMORPHISMS OF THE NEARFIELD $K = K(q^2)$

It is quite evident that the automorphism group Aut K is isomorphic to \mathbb{Z}_2 . Indeed, on the one hand, $|\operatorname{Aut} K| \leq 2$ [1, 5.2.2]. On the other hand, it is easy to check that the mapping $\sigma: K \to K$, defined by the correspondence $az + b \mapsto (az + b)^{\sigma} = -az + b$, is a nontrivial automorphism of K, usually called conjugation in K.

Let $\chi = \chi(S, L)$ be an arbitrary homology of order two of **H** with centre S and axis L (since $o(\chi) = 2$ and q is odd, S is not incident with L). Actually, $S \in P$ and $L \in L(1)$.

From 1.c, d and 2 it follows that there exists a collineation $\psi = \sigma \chi$, where $\sigma \in \operatorname{Aut} K$, $\sigma \neq \operatorname{id}$. That gives us a reason to investigate the geometry of the ψ -invariant points and lines of **H**. The main result in this paper is the following statement:

Theorem. The ψ -invariant points and lines of **H** form a Baer subplane $\pi = \pi(S, L)$ of order q of **H**, non-isomorphic to the subplane \mathbf{H}_0 .

Since the group Aut K is flag-transitive, it is sufficient to prove the theorem in the case when the homology χ has as an axis the line $L_1: x_1 + x_2 + x_3 = 0$ and as a centre an arbitrary point $S \in P$ which is not incident with L_1 .

Let χ^* be an arbitrary homology of **H** with centre S = (a, b, c) $(a, b, c \in F)$ and axis L_1 . Then the action of χ^* over the points of **H** can be presented as follows:

$$\chi^*: \bar{x}' \circ k^* = \mathbf{A}^* \bar{x}, \quad k^* \in K \setminus \{0\},$$

where the column vector $\bar{x} = (x_1, x_2, x_3)^t$ is an arbitrary point of \mathbf{H} , $\bar{x}' = (x_1', x_2', x_3')^t$ is its image under χ^* , and the matrix $\mathbf{A}^* \in \mathrm{GL}_3(q)$ has the form

$$\mathbf{A}^* = \begin{pmatrix} a+\rho & a & a \\ b & b+\rho & b \\ c & c & c+\rho \end{pmatrix},$$

where $\rho \in F$. Let us point out that $a + b + c \neq 0$ since S is not incident with L₁.

We denote by 2 the element 1+1, where 1 is the unit element of the multiplication in F (and, respectively, in K). Since the characteristic of F is odd, $2 \neq 0$. Then the homology $\chi = (S, L_1)$ of order two with centre S = (a, b, c) and axis the line L_1 is defined by the matrix

$$\mathbf{A} = \begin{pmatrix} 2^{q-2}(a-b-c) & a & a \\ b & 2^{q-2}(b-a-c) & b \\ c & c & 2^{q-2}(c-a-b) \end{pmatrix}.$$

If the collineation ψ fixes some quadrangle (four points, no three of which are incident with one and the same line) pointwisely, then ψ maps to itself some proper subplane of \mathbf{H} . We will show that there exist four points, no three of which are incident with one and the same line, and which are invariant with respect to ψ .

The ψ -invariant points and lines are exactly these, which the homology χ maps onto their conjugated ones, respectively. With the line L_1 are incident precisely q+1 different points of the orbit P. Obviously, these points together with the centre of ψ — the point S=(a,b,c) — are invariant with respect to the collineation ψ . If the ψ -invariant points and lines of H form a Baer subplane, then every point of the supposed subplane will be incident with exactly q+1 different ψ -invariant lines. Since all basic lines $L_t(1)$ are incident with the point $P_1=(-1,0,1)$, one can expect that there exist q+1 ψ -invariant ones among them. That is why we have

to find the number of lines $L_t(1)$, which are mapped under the homology of order two $\chi = \chi(S, L_1)$ in their conjugated lines $L_t \sigma = (L_t)^{\sigma}$, respectively.

Let $L_t \neq L_1$, $L_t: x_1+t \circ x_2+x_3=0$, $t \in K \setminus F$. Since the line L_t is different from the line y=0, an arbitrary point T, not incident with L_t , $T \neq P_1$, has coordinates $(x_1, 1, -(x_1+t))$, $x_1 \in K$. Then $\chi(T) = T'$, where $T' = (2^{q-2}(a-b-c)x_1+a-a(x_1+t), 2^{q-2}(b-a-c)-bt, cx_1+c-2^{q-2}(c-a-b)(x_1+t))$. Therefore $\chi(L_t) = L'_t$, $L'_t = P_1T'$ and the element $t' \in K \setminus F$ is uniquely determined by the equation

$$t' \circ (m+bt) = 2m+b-mt, \tag{2}$$

where $m = 2^{q-2}(a-b+c)$. Hence $m \in F$ and m depends on the coordinates of the centre S = (a, b, c) only.

Now we will find the number of distinct solutions of the equation (2) when $t' = t^{\sigma}$. It is convenient to consider two cases with respect to b: b = 0 and $b \neq 0$.

Case 1. Let b = 0, i.e. S = (a, 0, c). In this case the equation (2) is of the form

$$mt' = m(2-t). (3)$$

Here $m = 2^{q-2}(a+c)$ and since S is not incident with L₁, $a+c \neq 0$, i.e. $m \neq 0$. Therefore $m^{-1} \in F^*$ and (3) yields that

$$t' = 2 - t. \tag{3'}$$

In general, each $t \in K \setminus F$ is of the form t = dz + e, $d \in F^*$, $e \in F$. As it was mentioned above, we are looking for the solutions of (3') when $t' = t^{\sigma}$, i.e. when t' = -dz + e. Then from (3') we obtain that

$$-dz + e = -dz + 2 - e. (3'')$$

Hence d is an arbitrary element of F^* and e = 1. These solutions give us exactly q - 1 distinct L_t -lines $(t = dz + 1, d \in F^*)$, which are mapped under the homology χ in their conjugated ones, respectively.

Case 2. Let $b \neq 0$, i.e. S = (a, 1, c). Now from (2) we have the following equation when $t^{\sigma} = t'$, namely

$$t^{\sigma} \circ (m+t) = 2m+1-mt. \tag{4}$$

Here $m=2^{q-2}(a+c-1)$ and since $a+1+c\neq 0, m\neq -1$. As t has the representation t=dz+e, so that $t^{\sigma}=-dz+e, d\in F^*, e\in F$, the relation (4) immediately gives

$$(-dz + e) \circ (dz + m + e) = -mdz + 2m - me + 1. \tag{4'}$$

For the result of multiplication in the left-hand side of (4') we have two possibilities, namely,

$$(-dz+e)\circ(dz+m+e)=\begin{cases} (-dz+e)(dz+m+e) & \text{if } dz+m+e\in\Phi_S,\\ (dz+e)(dz+m+e) & \text{if } dz+m+e\in\Phi_N. \end{cases}$$

If we assume that $dz + m + e \in \Phi_N$, then for d and e we have from (4') that $(m+2e)dz + d^2z^2 + e(m+e) = -mdz + 2m + 1 - me$. Since $z^2 = \alpha$, we obtain

$$(m+2e)dz + \alpha d^2 + e(m+e) = -mdz + 2m + 1 - me. \tag{4''}$$

Hence e = -m, i.e. $e \neq 1$, and $d^2\alpha = (e-1)^2$, i.e. $d \neq 0$. Therefore $\alpha = [d^{-1}(e-1)]^2$, i.e. α is a square in the field F, but this contradicts the choice of α . Therefore, if there exists a solution of the equation (4'), then $dz + m + e \in \Phi_S$.

Suppose that
$$dz + m + e \in \Phi_S$$
. Now (4') is reduced to
$$\alpha d^2 = e^2 + 2me - 2m - 1. \tag{4'''}$$

We transform the right-hand side of (4''') as follows: $e^2 + 2me - 2m - 1 = e^2 + 2me + m^2 - m^2 - 2m - 1 = (e + m)^2 - (m + 1)^2$, and then (4''') becomes

$$(-\alpha)d^2 + (e+m)^2 = (m+1)^2, \tag{5}$$

where $m \neq -1$ is a fixed element of F and $\alpha = z^2$.

Let η be a quadratic character of GF(q) (q - odd), i.e. $\eta(c) = 1$ if c is a square in GF(q) and $\eta(c) = -1$ if c is a nonsquare in GF(q). Define the function v on GF(q) by v(b) = -1 if $b \in GF^*(q)$ and v(0) = q - 1. Let $N(\alpha_1 y_1^2 + \alpha_2 y_2^2 = b)$ $(b \in GF(q), \alpha_1, \alpha_2 \in GF^*(q))$ be the number of the solutions of the equation $\alpha_1 y_1^2 + \alpha_2 y_2^2 = b$ in the field GF(q). Then [4, 6.24]

$$N(\alpha_1 y_1^2 + \alpha_2 y_2^2 = b) = q + v(b)\eta(-\alpha_1 \alpha_2).$$

In the case of the equation (5) in the variables $y_1 = d$ and $y_2 = e + m$ we have $\alpha_1 = -\alpha$, $\alpha_2 = 1$ and $b = (m+1)^2$. Since $m \neq -1$ and α is a nonsquare in GF(q), $v((m+1)^2) = -1$ and $\eta(-\alpha_1\alpha_2) = \eta(\alpha) = -1$. Therefore $N((-\alpha)d^2 + (e+m)^2 = (m+1)^2) = q+1$.

The solution (0, 1+m) of the equation (5) gives the line L₁ and to the solution (0, -2m-1) = (0, -(a+c)) corresponds the line $SP_1 : x_1 - (a+c)x_2 + x_3 = 0$, $SP_1 \in L(1)$.

For each of the remaining q-1 solutions (d, e+m) of the equation (5) we will prove that $dz+(m+e)\in \Phi_S$. Suppose that (d_1, e_1+m) is a solution of (5) such that $u=d_1z+(m+e_1)\in \Phi_N$, i.e. $u=\theta^{2l+1}$. Then $u\circ u=uu^q=(-\alpha)d_1^2+(e_1+m)^2=(m+1)^2$, i.e. $\theta^{(q+1)(2l+1)}=(m+1)^2$, and therefore $\theta^{[(q^2-1)/2](2l+1)}=(m+1)^{q-1}=1$. But, on the other hand, $\theta^{[(q^2-1)/2](2l+1)}=(-1)^{2l+1}=-1$. It turns out that 1=-1, which contradicts the oddness of the characteristic of the field F=GF(q). Therefore every solution (d,e+m) of the equation (5) with $d\neq 0$ gives an element $w=dz+(m+e)\in \Phi_S$. That means there exist exactly q-1 distinct basic lines L_t ($\neq L_1$) invariant with respect to the collineation ψ .

Now it is easy to find ψ -invariant points, no three of which are incident with one and the same line. Let $P_i \in P$, i = 1, 2, 3, be three different points which are incident with the axis L_1 of the homology of order two $\chi = \chi(S, L_1)$ and differ from the point (-1,0,1). Then the points S, P_1 , P_2 , $T = SP_3 \cap L_t$ have the desired property, L_t is an arbitrary invariant with respect to the ψ basic line different from L_1 and S = (a,b,c) is the centre of χ .

Hence for any point $S \in P$ and any line $L \in L(1)$, S non-incident with L, the points and lines of H invariant with respect to the collineation $\psi = \sigma \chi$ form a Baer subplane $\pi = \pi(\chi)$ of H of order q (χ is the homology of order two with centre S and axis L, $\sigma \in Aut K$, $\sigma \neq id$). It is clear that this subplane $\pi = \pi(\chi)$ is not isomorphic to the well-known Baer subplane H_0 of H with respect to the group

Aut **H**. Otherwise there exists an element $\phi \in \text{Aut } \mathbf{H}$ such that $\phi(P_0) = T_0$, where P_0 and T_0 are arbitrary points from the orbits P and T, respectively. Hence Aut **H** acts transitively over the set of all points of **H**, which is inadmissible in any Hughes plane.

It is naturally to ask whether the subplanes of the kind $\pi = \pi(\chi)$ are isomorphic to each other with respect to the automorphism group of the plane **H**. We claim that the answer of this question is positive.

Let S_1 and S_2 be arbitrary points of P and L^1 , L^2 be lines of L(1), S_i be non-incident with L^i (i=1,2). Denote by χ_i the homology of order two with centre S_i and axis L^i (i=1,2). Let $\pi_i = \pi_i(\chi_i)$ be the subplane generated by the collineation $\psi_i = \sigma \chi_i$ (i=1,2). If there exists an element $\phi \in \operatorname{Aut} \mathbf{H}$ such that $\phi(S_1) = S_2$ and $\phi(L^1) = L^2$, then $\phi(\pi_1) = \pi_2$.

Due to the fact that the group Aut **H** is flag-transitive, it is sufficient to consider only the case when the axis of χ_1 and χ_2 is the line $L_1: x_1+x_2+x_3=0$, the centre S_1 of χ_1 has coordinates (1,0,0), and the centre S_2 of χ_2 is an arbitrary point from the orbit P non-incident with L_1 . Then S_2 has coordinates (a,b,c), $a,b,c \in F$ and $a+b+c \neq 0$.

In order to prove that the subplanes $\pi_1 = \pi(\chi_1)$ and $\pi_2 = \pi(\chi_2)$ are isomorphic, it is sufficient to show that there exists an automorphism $\phi \in \text{Aut } \mathbf{H}$ which maps certain quadrangle of π_1 into a quadrangle of π_2 .

In the case when $S_2=(a,0,b)$, the points S_1 , S_2 and $P_1=(-1,0,1)$ are incident with the line $x_2=0$. Then the isomorphism between the subplanes π_1 and π_2 is realized by the elation $\varepsilon_1=\varepsilon_1(P_1,L_1)$ with centre $P_1=(-1,0,1)$, axis L_1 and $\varepsilon(S_1)=S_2$. It is obvious that in this case both subplanes π_1 and π_2 contain the lines of the form $L_t: x_1+t\circ x_2+x_3=0$, where t=dz+1, $d\in F^*$.

Let the points $P_2 \neq P_3$ be in the orbit P, P_2 and P_3 be incident with L_1 , and suppose that $P_2 \neq P_1$ and $P_3 \neq P_1$. The line S_1P_2 intersects an arbitrary line $L_{t_1} \in \pi_1$, $t_1 = d_1z + 1$, $d_1 \in F^*$ at a point $T_1 \in \pi_1$, and the line S_2P_2 intersects the same line $L_{t_1} \in \pi_2$ at a point $T_2 \in \pi_2$. Then the points S_1 , P_2 , P_3 , T_1 form a quadrangle in π_1 and the points S_2 , P_2 , P_3 , T_2 — quadrangle in π_2 . Since the point P_1 is incident with all the lines L_t , $\varepsilon_1(L_t) = L_t$, hence $\varepsilon_1(S_1, P_2, P_3, T_1) = (S_2, P_2, P_3, T_2)$, which gives us that $\varepsilon(\pi_1) = \pi_2$.

Let $S_2 = (a, 1, c)$. Since S_2 is non-incident with L_1 , $a + c + 1 \neq 0$ and the line S_1S_2 intersects the line L_1 at the point $P_12 = (-1 - c, 1, c)$. Similarly, the isomorphism between the subplanes π_1 and π_2 is realized by the elation $\varepsilon_2 = \varepsilon_2(P_12, L_1)$ with centre P_12 , axis L_1 and $\varepsilon_2(S_1) = S_2$. This elation is given by the matrix

$$\mathbf{B} = \begin{pmatrix} a & -1-c & -1-c \\ 1 & a+c+2 & 1 \\ c & c & a+2c+1 \end{pmatrix}.$$

Actually, we have that each point $G_1 \in \pi_1$ which is incident with the line S_1P_1 is mapped under the elation ε_2 into a point $G_2 \in \pi_2$ which is incident with the line S_2P_1 .

The homology of order two $\chi_1 = \chi_1(S_1, L_1)$ with centre $S_1 = (1, 0, 0)$ is given by the matrix

$$\mathbf{C} = \begin{pmatrix} 2^{q-2} & 1 & 1\\ 0 & -2^{q-2} & 0\\ 0 & 0 & -2^{q-2} \end{pmatrix}.$$

The line $S_1P_1 \in L(1)$ has an equation $x_2 = 0$ and therefore it differs from the line $x_3 = 0$. Then each point $G \neq S_1$ which is incident with the line S_1P_2 has coordinates (dz + e, 0, 1), $d, e \in F$. The point G belongs to the subplane π_1 iff $\chi_1(G) = \sigma(G)$. Hence the points G_1 of π_1 , incident with the line S_1P_1 , have coordinates (dz - 1, 0, 1), $d \in F$ (when d = 0, $G_1 = P_1$).

The homology of order two $\chi_2 = \chi_2(S_2, L_1)$ with centre $S_2 = (a, 1, c)$ and axis L_1 is given by the matrix

$$\mathbf{D} = \begin{pmatrix} 2^{q-2}(a-c-1) & a & a \\ 1 & 2^{q-2}(-1-a-c) & 1 \\ c & c & 2^{q-2}(c-a-1) \end{pmatrix}.$$

The equation of the line $S_2P_2 \in L(1)$ is $x_1 - (a+c)x_2 - x_3 = 0$ and it is easy to see that the points $G_2 \in \pi_2$, which are incident with S_2P_2 , have coordinates $(dz + a, 1, -dz + c), d \in F$.

We have $\varepsilon(G_1) = G'$, where the coordinates of the point G' are (adz - (a+c+1), dz, cdz + (a+c+1)), $a+c+1 \neq 0$. If $d \neq 0$, then the point G' has coordinates $(adz - (a+c+1), dz, cdz + (a+c+1)) \circ (dz)^{-1}$, that is $G' = (-(a+c+1)(dz)^{-1} + a, 1, (a+c+1)(dz)^{-1} + c)$. Since $(dz)^{-1} = \bar{d}z$, $G' = (d^* + a, 1, -d^* + c)$, where $d^* = -(a+c+1)\bar{d}$, $d^* \in F^*$.

If d = 0, then $G_1 = P_1 = G' = (-(a+c+1), 0, (a+c+1))$. Hence G' is incident with S_2P_1 and $G' \in \pi_2$.

Let P be an arbitrary point in the orbit P, let P be incident with the line L₁ and P₁ \neq P \neq P₁₂. That is why the point P belongs to the subplane π_1 as well as to the subplane π_2 . Then the elation $\varepsilon_2 = \varepsilon_2(P_12, L_1)$ maps the quadrangle (P_12, P, S_1, G_1) of π_1 onto the quadrangle $(P_12, P, S_2, G_2 = G')$ of π_2 $(S_1 \neq G_1 \neq P_12, S_2 \neq G_2 \neq P_12)$.

In this way we have proved that the subplanes π_1 and π_2 are isomorphic with respect to the automorphism group of **H**.

Acknowledgements. The author is thankful to Prof. Ch. Lozanov for his useful suggestions and attention shown to this paper.

REFERENCES

- 1. Dembowski, P. Finite Geometries. Springer-Verlag, 1968.
- 2. Hall, M. The Theory of Groups. The Macmillan Company, New York, 1959.
- Singer, I. A Theorem in Finite Projective Geometry and Some Applications to Number Theory. Trans. Amer. Math. Soc., 43, 1938, 377-385.

 Lidl, R., H. Niederreiter. Finite fields. Addison — Wesley Publishing Company, Advance Book Reprogram/World Science Division Reading, 1983.

Received March 26, 1999

Faculty of Mathematics and Informatics "St. Kliment Ohridski" University of Sofia 5 James Bourchier Blvd. BG-1164 Sofia, Bulgaria