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Let 2 be a total abstract structure. We prove that if aset A C |%|™ is admissible in every

partial enumeration of 2 with semicomputable codomain, then A is semicomputable in
2 in the sense of Friedman - Shepherdson.
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1. INTRODUCTION

There are two major ways to introduce a notion of computable function on
an arbitrary abstract structure 2. Using the first one, which we may call explic-
it, computable functions are defined by means of relativized programs, generallzed
algorithms, formulas, etc. The second approach, known as implicit, reduces the
problem to computability on natural numbers making use of various types of enu-
merations of the structure.

It turns out that most of the well-known explicit notions of abstract com-
putability can be characterized via enumerations. As a rule, when considering
computability without “search” over the domain, we need a suitable notion of par-
tial enumeration. A typical result of this type is the next theorem from (3}, which

* This work was partially supported by the Ministry of Education, Science and Technologies,
Contract I 604.
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characterizes the semicomputable sets, i.e. the sets, whose semicharacteristic func-
tions are computable in the sense of Friedman ~ Shepherdson ([1, 2]), using finitely
many constants from |%|.

1.1. Theorem. A set A C |U|" is semicomputable in 9 if and only if A 1s
admissible in every partial enumeration of 2.

Here an interesting question is whether there exists a subclass & of the class
of all partial enumerations such that admissibility in every enumeration in & guar-
antees semicomputability, and further, whether there exists minimal such class.
This question is answered partially in [4], where it is proved that admissibility in
all partial enumerations with £J domains yields semicomputability. Here we show
that the same is true if we confine ourselves to the class of all enumerations with
I1Y domains and this is the minimal class with this property.

2. PRELIMINARIES

Let an abstract structure % = (B;6,,...,0;, %, .. ., Lm) be given, where the
set B is finite or denumerable, 6; is a total function of a; arguments in B and X;
is a total predicate of b; arguments in B. The equality relation is not supposed to .
be among the initial predicates of 2. We shall write £;(5) =0 ( 1) when ¥;(5) is
true (resp. false).

2.1. Definition. Partial enumeration of 2 is an ordered pair (f,B), where
[ 1s a partial function from N (the set of all natural numbers) onto B,
B =(N;o1,...,0k,Q1,...,Q@Qm) is a total structure in the signature of ?A, and
the following conditions hold for 1 < i < k and 1 < j < m:

(1) if 2y, ..., @4, are in Dom(f), then pi(z1,...,z4,) € Dom(f);

(2) fpi(zy, - -,2a))) = 0:i(f(21), -, f(2a,)) for @1, ..., 24, in Dom(f);

(3) Qj(z1,...,z,) = Z,-(f(:cl):,.,“"._."'.,f(a:bj)) for zy, ..., zp, in Dom(f).

In other words, the pair (f,B) is a partial enumeration of 2 if ths mapping
f I Dom(f) is a strong homomorphism from B | Dom( f) onto .

The set Dom(f) is called domain of the enumeration (f,B).

A set W C N" is semicomputable in B iff the semicharacteristic function of
W 1s Turing computable relative to ¢, ..., vk, Q1, .. H Qm.

2.2. Definition. A set A C B" is admissible in the enumeration (f,B) iff
there exists a semicomputable in B set W C N™ such that for all Ty, ..., Ty 1IN

Dom(f)
(@1,...,2n) EW <= (f(z1),..., f(zn)) € A.

The set W is called an associate of A (in the enumeration (f,*B)).
Next we introduce the notion of semicomputable set in the sense of Friedman
- Shepherdson [1, 2]. Say that the n-ary predicate 1I in B is elementary iff it is
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a finite conjunction of atomic predicates or their negations. Suppose that some
effective coding of all elementary predicates (of arbitrary number of arguments) is
fixed and denote by IV the predicate with code v.

A set A C B" is semicomputable in 2 iff there exist constants ¢y, ..., ¢/ In
B, 1> 0, and an unary recursive function v such that for every v, v(v) is a code
of an elementary predicate with variables among X 1,--yXn, Y1,...,Y; and the
equivalence

(81,...,8,;) €A« v (H"’(”)(Xl/sl,...,X,,/s,,,Yl/tl,...,Y;/t,) = 0)

is satisfied for every (s1,..., sn) € B™.

3. STANDARD ENUMERATIONS

In order to save space, from now on we shall suppose that the initial functions
and predicates of the structure 2 = (B;by,...,0k,%1,...,5m,) are unary. We shall
consider also subsets of B (instead of B™).

For our goal it is sufficient to confine ourselves to some special type of enumer-
ations, called standard enumerations [3]. To introduce the precise version of this
notion that we will need here, let us first fix some recursive coding (, ) of ordered
pairs of natural numbers, chosen in such a way that the decoding functions L and
R satisfy the condition |

Liz)<z & R(z) <z
for all z € N. (Take, for example, (z,y) = 2°(2y + 1).) We shall write sometimes
(2)o and (z); instead of L(z) and R(z), respectively.
Set
No=N\{(i,z)|1<i<k,z €N}

Let fo be an arbitrary partial mapping from No onto B. Using a course-by-

value-recursion, define f as:

~ fo(x), I 6 NO)
f(z) = {9i(f($o’)), z = (i,z0) for some 1 <1 < k.

Now for 1 <1<k and 1 <j < mset
(p,'(.'l!)= (i’x>

and
2i(f(z)), z € Dom(f),
arbitrary, otherwise.

Qi(z) = {

It is an easy exercise to check that the pair (f,B = (N;¢1,..., 9%, Q1,- -+, Qm))
is an enumeration of 2. Every enumeration, obtained in the way just described, we

shall call a standard enumeration.
Let W C N is semicomputable in B. Since B is total, it is equivalent to the
fact that W = T.({%B)) for some enumeration operator with index e, more precisely,

W = {2 l 3v((v,z) s We & Dv g (%»}’
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where W, is the e-th r. e. subset of N, D, C N is the finite set with canonical index
v and ('B) is “the code” of ‘B, i.e. the set, which consists of the codes (i,z,y) of
the triples (7, z, y), such that
| (I<i<k&y=(i,z)) V (k+1<i<k+m&Qi(z)=y).
Let root(z) be the recursive function such that
T, if x € Np,
reot(z) = { root(zg), if z = (i,zo) for some | <i<k.
Clearly, root(z) € Ny for every £ € N. Define F: N x B — B as
F(z s)={s’ .ifIEN.O’ ' ,_
’ 0:(F(zo,s)), ifz = (i,zq) for some 1 < i< k.
So, thinking of z as a code of an one-variable term in the signature of 2, F(z,s)
is the value (in 2) of this term, when its variable is evaluated to s.

Below we introduce appropriate notions of a finite part and a forcing relation.
Let 29, z1, ... be an enumeration of the elements of Ny in an ascending order.

3.1. Definition. Finite part (of a standard enumeration) is an (m + 2)-tuple

T= (fT;HT;QI)"'rqm))
where f; is a finite function from N into B, H, C Ny is a finite set, Dom(f:)NH, =
D, Dom(f;)U Hy = {z0,...,2} for some ! > 0, and ¢y, ..., gm are unary finite
predicates satisfying the additional condition
z € Dom(q;) = rooi(z) € H,.

The set Dom(f;)U H. we shall call domain of 7 (to be denoted by Dom(r)).
If Dom(7) = {z¢,..., 1}, then l is the length of T (in symbols |7|).

Whenever 7 = (f;; Hr;q1,...,9m) is a finite part, z € Ny is the first not in
Dom(7) and s € B, by 7 * s we shall denote the tuple (9: Hr;91,...,9m), where g
is the function with graph G; U {(z,s)}. Clearly, 7 * s is a finite part.

Let 7 = (fr; Hy;q1,--.,qm) and 6§ = (fs; Hs;r1,...,™m) be arbitrary finite
parts. We introduce three types of partial relations between finite parts:

TCéd <= frgfé&H'rgHé&QIgrl & ‘-'&ngrm§
TS0 &= 1C6& f. = fs;
Tx6 < 7<6& H: = H;.
As usual, we willwrite 6 D 7,6 > 7, ... for 7 C 6, 7 < 6, etc.
The enumeration (f,B = (N;¢1,...,0%,Q1,..:,Qm)) extends 7 (r C(f,B))
iff f; C f, H, CN\ Dom(f)and ¢; CQ; fori=1,... m.
Now set

rlhu = JzdyTi(u= (i,z,y) & 1<i<k &y={i,z) V
u:(k+i,a:,y)& I1<i<m& (gi(z)=yV
rool(z) € Dom(fr) & Ei(F(z, f;(root(z)))) = y));
7IF D, <=>Vu(uEDv = 7k u);

Tl Re(z) <= Jv((v,z) € W, & 7 IF D,).
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The next simple observation will be of use in the sequel.

3.2. Lemma.
(1) ik R.(z) & 7 C p == plF R.(x) (monotonisity);

(2) TIF Re(z) & 7 C (f,B) = z € [((B));

(3) z € T.((B)) = 3Ir(r C(f,B) & 7k Re(x));

(4) T C(1,B) & Volp > 7 = pl Re() = = & L.((B))

Proof. The verification of (1) - (3) is straightforward.

(4) Towards contradiction assume that z € I'¢((%)). Then by (3) there exists
some & = (fs; Hs;71,...,7m) such that § C (f,B) and § |+ R.(z). Since 7 =
(friHriq1,---,qm) C (f,B) as well, the sets G = Dom(f;) U Dom(fs) and H =
H, U Hj; are d15301nt and G U H is an initial segment of Ny. It is clear also that
the predicates v} = ¢; Ui, 1 < 1 < m, are single-valued and the ordered tuple

= (f-Ufs; HrUHs; 7y, ..., 7r,) is a finite part. We have 8’ D 6, hence ¢’ IF R.(z).

It means that §' |- D, for some v with (v,z) € W,. Now consider the tuple
p=(fr; HU(G\ Dom(7));p1,...,Pm), where

pi =riU{(z,y) | = € G\ Dom(r)& Ju(u € D, & u= (k+1,2,9) )}-
Clearly, p I+ D, and p > 7 — a contradiction. U

4. THE MAIN RESULT

In order to establish our result, we introduce a suitable notion of normal form
of a subset of B.

4.1. Definition. A set A C B has a normal form, if there exist a finite part
6 and a natural number e such that if z € Ny is the first not in Dom($), then

sEA < Jp(p>bxs& plk R(z))
for every s € B.

Now the rest of the paper is devoted to the proof of the next theorem.

4.2. Theorem. Let A C B. The following conditions are equivalent:

(1) A'is semicomputable in Ql'
(2) A s admussible in every enumerdtion (f,B) such that N\ Dom(f) 1s
semicomputable in ‘B,

(3) A has a normal form.

Proof. The implication (1) = (2) follows immediately from the definitions.
To see that (3) == (1) holds, take into account the next two observations:
(a) The set R = {(e,z) | pIF Re(z)} is semicomputable in 2.
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(b) In order to find (if it exists) a finite part p such that p > r (with 7 fixed),
it is sufficient to search over natural numbers (notice that for the more common
inclusion “D” this is not true). More precisely:

p2T <= JHIr,.. ., rm(HDH- &1 Dq] & ...t;m D¢, &
(friH;r1,...,rm) is a finite part).

The interesting part of the theorem is the direction (2) = (3), which now we
prepare to prove using some auxiliary lemmas.

Indeed, assume that (2) holds, but the set A does not have a normal form. We
are going to construct a standard enumeration (f,8) in which A is not admissible
and such that N\ Dom(f) is semicomputable in 8.

Clearly, A # @ — check that the empty set has a normal form. Therefore,
if I'.((*B)) is an associate of A, then W, # @. So it will be sufficient to consider
only the indexes of non-empty r. e. subsets of N. As it is well-known, every set of
this type can be enumerated by some unary primitive recursive function. We will
need in fact gome uniform procedure that enumerates the elements of nonempty
r.e. sets. So consider U(n,z) — the universal for all unary primitive recursive
functions. By the S)'-theorem, there exists recursive function o:

Wo(e) = Range(Az.U(e.x)).

Our aim is to construct successively a sequence of finite parts 7(® C (1) C .. such
that for every enumeration (f,B) of 2 and every n it is true that '

if 7(27+1) C (f,%B), then [5(n)({(B)) is not an associate of A. (%)

It is clear from here that if (f,B) is an enumeration, such that (*) C (f,8)
for every n, then A is not admissible in 2. Indeed, assuming the contrary, we will
have an index e such that I'.({8)) is an associate of A. Since W, # &, there exists
n with Wo(,) = W,. Therefore I'y(,)(('B)) is an associate of 4, which contra-
dicts (*).

Let us fix some enumeration s, s, ... of the elements of B. Now we are going
to define the sequence {‘r(") }n satisfying (*). The definition is by induction on n.

Set 7(0) = (f<°);H(°);q§°), .. .,qﬁ,?)), where f(9) is the function (with graph)
{(20,50)}, H® = & and all qgo) e, qsg) are unary predicates with empty do-
mains. Assuming that 7(27) = (f(2n);H(2");q§2"),...,qg")), n > 0, is already

determined, we define 7(?"+1) and 7(27+2) a5 follows.

Let ¢ € Ng be the first which does not belong to Dom (1(2“)). By assumption
A does not have a normal form, so there exists s € B such that exactly one of the
next two conditions holds:

¢ s€A&Vp(p 2T xs = pl Ryiny(2));
oo sZgA&Ip(p>T® x5 & plF Ry(n)(T)).
In the first case put

r(2nt]) — 2(2n) 4 ¢
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If the second case holds, take some finite part p such that

p 27 x5 & plk Rymy(2)

and set 7(2"+1) = p,

Let us notice that this rather arbitrary choice of the above p is sufficient only
to establish (*). To claim that the codomain of (f,B) is semicomputable in B, we
will further have to choose p more carefully.

Let s be the first in the list so, 51, ..., which is not in Range (r(?*+1)). Set

1.(2n+2) — T(2n+l) XS,

Now let (f,B) be an enumeration which extends 7(2"+1). In order to establish
(), assume that Ty(,)((B)) is an associate of A in (f,B). Then for every z €
Dom(f)
z € Ton)((B)) < f(z) € A (4.1)
Now let £ € Ny be the first not in Dom (7(2")).

By definition f(?**t1)(z) = s, hence z € Dom(f). According to the choice
of s we have that either e or ee is true. Suppose first that s € A & Vp(p 2
) x s = pW¥ Ryn)(z)). By Lemma 3.2 (4) z & [o(n)({B)), so using 4.1, we
obtain f(z) = s ¢ A — a contradiction. Therefore it is the case s ¢ A& Ip(p 2
727) ¥ 5 & p b Ry(n)(z)). According to Lemma3.2(2) z € To(n)((B)) and again
by (4.1) f(z) = s € A, which is also impossible.

Now set

fo -_-Uf(n), H :UH("), g :qu(.") for1<i<m.

Obviously, Dom(fo) U H = @ (otherwise there will be some n such that z €
Dom (f(“)) &z € H(")) and Dom(fo)U H = Ny. Notice also that with the even

steps of the definition of {‘r(")}n it is ensured that fo is a partial mapping onto B.
Define the predicates Q;, 1 <7 < m, as

%i(f(2)), if = € Dom(f),
Qj(z) = { gi(z), if z € Dom(g;),
0, otherwise.

. This definition is correct since for any 1 < j < m:

z € Dom(f) <= root(z) € Dom(fy) <= root(a,;) 7 UH(") =

Vn (:z: ¢ Dom (qg.."))) <> z & Dom(q;).

Now putting

() = {fo(l‘), if z € Dom( fo),
fz) = 0:(f(zo)), if z = (i, zo) for some 1 < i <k,
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we obtain a standard enumeration (f,B = (N; Az.(1,z),.. ., Az.(k,z),Q1,...,Qm))
of 2. It is clear that for arbitrary n:

fMChCféq™CaCQ,1<i<m & H™ CHC N\ Dom().

Therefore 7(*) C (f,B) for every n, which immediately brings us to the conclusion
that A is not admissible in B.

The work done so far repeats in essence the respective proof in [3] Our aim is
to show that if we choose more precisely the finite parts p (when it is the case oe),
then we may claim that N\ Dom(f) is semicomputable in 8.

Set for brevity

Tk Pe(z) <= 7IF Ry(o)(2).

We have by definition
Ik Py(z) <= Ju((v,z) € Wy(e) & 7IF D) <=
(U (e, 1) = (v,2) & I D,)) <= H(U(e, O = = & 7 IF Diy(e,oy).

Put
Tl Po(z) <= 3to (to <t & (Ule,to))1 =z & 7 IF D (e o)) -

Obviously,
7 IF Pe(z) <= 3t(7 Ik Po(z)).
The first ¢ with 7 b, P.(2) may be thought of as the first step at which the validity
of the fact that 7 IF P.(z) is established.
For a finite part 7 = (f;; H:;q1,...,gm) with |7| = w put
= (fr; H, U {Zw-i-ly . zw+l};‘11, s -»Qm) .

Clearly, for each { > 1, 7 is a finite part, too.
The next lemma w1ll be of use when constructing the modlﬁed sequence {r(")} .

4.3. Lemma. Suppose that 3p(p > 7 & p It P,(z)). Then there exist | > 1
and p* = 1 such that p* Ik, P.(z).

Proof. Let p Ity Pe(z), where p = (f,; Hpiq1,...,qm). Set I = max(ly,t + 1),
where [y = |p| — |7|. We claim that the finite part '
p\‘l = (fT) HT U {ZITH-I) RS ZITH-l};ql) co ,Qm)

fulfills the requirements of the lemma.

Indeed, we have f,. = f,,, p* = H;, and ¢; extends the i-th initial predicate
ofnfor1<z<m so p* = m. Besides, p* D p and [ — 1 > ¢, hence p* IFj_; P.(z).
O

Now we make the following refinement in the definition of the odd members of
{r(")}n. Again assuming that 7(*") is already defined and denoting by z,, the first

number in the list zg, 21, ..., which is not in Dom (7)), we will have that there
exists p, € B such that

SGA&Vp(pZT(zn)*pn = pW¥ Pn(a:,,)) or
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3¢A&3P(p27(2")*pn&P“—Pn(xn))' :

Set for brevity 7 = 7(?®) x p,. If the first of the above two cases holds, set
r(2n+1) = + otherwise start to look for the least { > 1, for which there exists
p* = m with p* Ibi_1 P, (z) (the definition of 7 is given immediately before Lemma
4.3). It follows from that lemma that such [ exists. Now put r(2n+1) = 5* where
p* %= m and p* kg P(z).

Now let (f,B = (N;¢1,...,9k,Q1,..-,Q@m)) be a standard enumeration, ob-
tained from the sequence {1'(")}n in the way described before. We have that A is
not admissible in (f,B), so to complete the proof of the theorem, it remains to see
that. N \ Dom(f) is semicomputable in B.

Let us notice that :

z € N\ Dom(f) <> z & Dom(f) <= rool(z) ¢ Dom(fo) '4=> root(z) € H.

Since root(z) is a recursive function, it is sufficient to see that the set H =
IJ H™ is semicomputable in B.
For t,l € N set
Bk, P,(z) <= o3v(lo <1 & Ule, o) = (v,z) & Vu(u€ D, =
Iidy(u=(i,z,y) & (1Li<k&y=(iz))V
(k+1<i<k+m&Qi(z) =y & root(z) < 21)))).
Below we describe a procedure P that generates effectively the elements of the
~ set. H, asking questions of the type «g(t) =, Pe(z)?".
Obviously, the set R = {(t,1,¢,z) | B") E; P,(2)} is decidable in B, so the set
generated by P is semicomputable in B.
Let I, = lk ((>™)) + 1. Then z, = 2,, in particular 2o = z;. Informally, the
procedure for generating N \ Dom(f) is the following.
We should begin with asking questions

B(‘°+1) Fo Po(.‘ro)?, %('”‘2) ':1 Po(z'o)?, ' o

in order to find (if it exists) the first ¢ such that gUo+t+1) £, Py(zo). If such ¢ does
exist, then according to the construction of 1) we put H®) = {z1,41, ..., 2ip4141}-
Since 21,4142 and zj,4¢43 are added to Dom ( f®) and Dom ( f®)), resp., they are
not in H. So we should set I} = Iy +t+ 3, z; = z, and then start searching for ¢
with B+ &, Py(z)).

Here the problem is that we do not know in advance whether there exists ¢
with B+ £, Py(z0). So if two unsuccessful steps in this search are done (i.e.
when BUotio Po(z0) and BUot2)it, Po(z)), we decide temporarily that such ¢
does not exist and start simultaneously a similar procedure for seeking the first
1< 1 BEHHD e Pz)for i =lp+2and 2} =2 ,ie ;=3 and 2} = z3. If
such ¢ < 1 again does not exist, we repeat the same for n = 2 and so on. Meanwhile,
if we have found (for example for n = 0) some o such that gllottotl) i Po(io),

we interrupt all started procedures for finding out ¢ with glitt+l) P;(z}) for
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t > 0. Then we print numbers z;,41, ..., Zig4to+1, S€t y = o+t + 3, z; = 21,
start searching for ¢: B+l i, P;(z}) etc.

However, this least tq with B(fo+tot+1) |, Py(zo) could be found after we have
come across some (let say) ¢;: Bhtti+i) Fi, Pi(z}), where !} and z are calculated

under the wrong supposition that_Vt‘B('”'“)}f,Po(:co). So, on the one hand, our
algorithm requires the respective set {zy’H, Ceey ng‘]_H} to be printed right after

such a t; has been found (since it is supposed to be the set H®)). On the other
hand, the “real” H®) may be different (and in fact is different). However, thanks to
the special choice of 7(1) (to be long enough), it turns out that the printed numbers
241, -+ -y 214t 41 actually belong to H® and hence to H.

Below we describe formally the procedure P that generates H. There the
function g(n,?) is intended to be such that z, = zy ,) for sufficiently large ¢,

namely t > [7(?*=1)|, The function G(t,n) from the program P is used to code the

information about questions of the type “B®) E, P, (y)?” for every n < y (v, y
depending on answers of similar questions for the numbers less than n).

Set

() =y1; (1, ¥n41) = (V1,0 Yn)s Yng1) forn > 1

Let Az.(z); be the recursive function such that if 2 = (y;,...,y,) andi € {1,...,n},

then (z); = y;, and (z); = 1 — otherwise. We shall obtain G(¢,n) in the format

(Yo, ..,¥t), where each y; will indicate (if ¢ is large enough) whether z; € H(™) or

not (writing y; = 0if z; € H™) and y; = 1if z; € Dom(fo)). The value G(t+1,n)

will depend on the last member y, of G(t,n), which is in fact R(G(t,n)). Since

certainly zo € Dom(f) and zo = z;, we put G(¢,0) = (1) and g(¢,0) =1 for ¢t = 0.
Here follows the exact description of the procedure P.

t:=0; G(¢,0):=(1); ¢9(¢,0):=1; 1: n:=0;
2:1f R(G(t,n)) =0 then
if g(t,n) =t +2 .
then G(t + 1,n) := (G(t,n),1); g(t+ 1,n) :=g(t,n); t :=t+1; go to 1
else G(t+ 1,n) := (G(t,n),3); g(t+1,n) :=g(t,n); n:=n+1; go to 2 £fi
else
if R(G(t,n)) =1 then
if g(t,n) =t+2 _
then G(t + 1,n) := (G(t,n),1); g(t+ 1,n) :=g(¢t,n); t:=t+1;go to 1
else if g(t,n)=t+1
then G(t + 1,n) := (G(t,n),1); G(t+1,n+1) := G(t + 1,n);
git+1,n):=g(t,n); gt +1,n+1):=t+3; t:=t+1;go0 tol
else if B i, Pp(2g4(1,n))
then G(t+1,n) := (G(t,n),0); print(z41); G(t+1,n4+1) := G(t+1,n);
g(t+1,n):=g(t,n); gt+1,n+1):=t+3; t:=t+1;go to 1
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else G(t+1,n) := (G(t,n),2); g(t+1,n) :==g(t,n);n:=n+1;go to2
fi fi fi
else
if R(G(t,n)) =2
then [ :=1t — g(t,n); if Blt+1) Pr(zg(t,n))
then G(t+1,n) := (LY(G(t,n)),0,...,0); print (2g(e,n)+1: Zg(t,n)+2: - -
1+1
G(t+1,n+1):= G({t+1,n); g(t+1,n) :=g(t,n); g(t+1,n+1) :=1+3;
t:=t+1;g0 tol ,
else G(t+ 1,n) := (G(t,n),2); g(t+1,n):=g(t,n); n:=n+1;go to 2 fi
else G(t + 1,n) := (G(t,n),3); g(t+1,n) :=g(t,n); n:=n+1; go to 2
fi fi fi.

) Zt+1);

Let us mention that some of the assignments in the above program are redun-
dant. They are put there only to facilitate the verification of the algorithm.

" Denote by Output(P) the collection of all numbers, printed by P. We have to
prove that

z € H <= z € Output(P). (4.2)
By an immediate inspection of P one can notice that for every ¢, n
g(t,n) <t+2& g(t,n) < g(t,n+1).
Set
S(n) = {0, if 3p (p > ) xp, & plk Po(zy)),
1, otherwise.

To establish the first direction of (4.2), we will make use of the fact that
G (Jr?n+1)], n) is the code of the characteristic function Cy of H, restricted to the
first [7(2"+1)| 4 1 members of Ny. In order to prove this, the next more common
observation will be needed.

4.4. Lémma

(1) For each t > |T(2n-1)l, 9(t, n) |7} + 1 (|7(-V] = 0);

(2) For each t > |rC+V)| G(t,n) = (yo, ..., y), where

(0, ifi<|rnH)| & 2 € HOrHD),
1, ifi<|r@rtD| & z; ¢ HOHD),
2, ifi> |t & S(n) = 1,

(3, ifi> |t & S(n) = 0.

N

Yi

Proof. Induction on n. (1) The case 'n = 0 is obvious. In order to check (2) for

n = 0, we shall separately consider the cases S(0) = 0 and S(0) = 1. If the latter
is true, 1.e.

Vp (p > xpy = pW Po(Zo)) ,
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then B ¥, Py(zo) for no v > 1 and v. So for every t, G(t,0) = (1,1,2,...,2).
¢
t—

Now suppose that S(0) = 0 and denote the finite part 7(®) xpy by 7. According
to Lemma 4.3 there exists least I > 1 for which there are finite parts p* such that
p" 2 m and p* IFi_y Po(zo). Let us remind that by construction 7(1) = p* where
p* satisfies the last conditions. We claim that

G(t,0)=(1,1,2,...,2) foreach 1 <t<I+1 (4.3)

t—1

G(I+1,0)=(1,1,0,...,0). (4.4)

{

and

Indeed, assuming that (4.3) does not hold and looking at the program P, we may
claim that there is a step t < ! such that 1 < t < | with 8¢+D Fi—1 Po(zo).
From here, there exists 6 C (f,B) with [§] =¢ + 1 such that 6 IF;_; Py(zo). Since
T C (f,B), we may assume that § > 7. We have || =t+1and 6 > r. In
addition, 6 Ik,_; Py(zo) and t < 1 — a contradiction with the choice of I.

To see that (4.4) also holds, recall that (1) IF,_, Py(z0), |T(l)[ =1+1
and (1) C (f,'B). So pli+1) Fi—1 Po(zo), and as we have just seen, [ is the
first one wit(h ti)is property. Hence at step ¢ = [ we shall have for the first
time that B*Y k,_; Py(z0), so G(t + 1,0) = (L(..., L(G(t,0))...),0,...,0) =

. _t,_)

t
(1,1,0,...,0), or G(I+1,0) = (1,1,0,...,0).
t !

Clearly, I > 1, hence R(G(I + 1,0)) = 0. Then for every ¢ > | we shall have

G(t+1,0) = (G(t,0),3), in other words, G(t+1,0) = (1,1,0,...,03, ..., 3).
A

Now suppose that for each j < n (1) and (2) are true. In particular, for | =
|r(2n+1)| we have that G(I,n) = (o, ..., u), where y; = CHu(2),0 < i< . Suppose
first that S(n) = 0. According to the construction of 7(2*+1) and the program P, at
‘step t with t+1 = |r(2+1)| we have G(t+1,n+1) = G(t, n) and g(t+1,n+1) = 143,
in other words, G(I,n+ 1) = (yo,...,u) and g(I,n + 1) = |[r(?*+1| 4+ 2. From the
latter, g(I,n + 1) = |7(22*+2)| 4 1, and since g(¢,n + 1) =g(l,n+1) for every t > I,
(1) is established for n + 1. From here z,,4; = Zjr(an42) |41 = Zg(t,n41) for t > L

By the induction hypothesis, for every t > [ and i < n we have that R(G(t,1)) =
2 or 31f S(i) is 1, resp. 0. Further, R(G(I,n)) = 0 and hence for every ¢t > I,
R(G(t,n)) = 3. From here, for every t > I there will not be situations that
may cause changes in G(f,n + 1), dué to the extension of an assignment of the
type G(t + 1,7+ 1) := g(¢t + 1,7) for some i < n. In other words, the value
of G(1 + 1,n + 1) depends uniquely on the answers of the questions of the type
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«g(t+1) Fe—(jrentn)+1) Prs1(zn41)?” (recall that g(t,n + 1) = [r(3n+2)| 4 1, as we
have already noticed).

Now to complete the verification of (2) for n 4+ 1, we proceed in essence as in
the case n = 0. The second case S(n) = 1 is treated similarly. [J

Our last lemma, which asserts that the program P is correct, completes the
proof of the theorem.

4.5. Lemma. H = Oulpui(P).
Proof. For the first inclusion, recall that H = UH("), where H(®) = @,

Hn) = gn-1) and HO C H(M) C ... So if z € H, then there exists n such that
z € H2+1) and z ¢ H™). Further, z = z; for some j < |r?"*V)|. According
to Lemma 4.4, G (|r(2"+1)l,n) = (Yo, - - -, Yjr(ansn)) With y; = 0. Since z ¢ H(M),
j > |7(2")], then at step t with ¢ + 1 = |7?"*!| the number z; will be among the
numbers, printed by P. o

Towards proving the inclusion Qutput(P) C H, let us notice that

zj € Output(P) <> 3n3t ((G(t+1,n)); =0 & g(t,n) <j<t+1)
Then it is sufficient to show that
(3n3t (G(t,n)); =0) =>z; € H. (4.5)
Define the predicate T" as follows:
T(n) <> Vj((3t(G(t,n)); =0) = z; € H).

We are going to establish VtT'(n) using induction on n. From here it follows (4.5)
for arbitrary j.

To facilitate the inductive step, we suppose that when an assignment of the
type G(t+1,n+ 1) := G(t + 1, n) is executed, the value G(t+1,n) is assigned also
to G(t+1,k) for every k > n+1 for which there exists step [ < t, at which G(I, k) is
determined. In other words, instead of single assignment G(t+1,n+1) := G(t+1,n)
we perform the finite list of assignments

G(t+1,n+1):=G(t+1,n),
G(t+1,n42):=G(t+1,n),

G(t+1,n")y:=G(t+1,n),

where n’ > n can be found effectively.

Let In(l,{yo,..., %)) = (o,..., ) for I < t. The validity of T(0) follows
from the proof of Lemma 4.4. We obtained there that for ¢ < |7(1)| we have
G(t,0) = (1,1,2,...,2), so if for some j there exists t such that (G(t,0)); = 0,

t—1 '

then ¢ > |7(1)], hence (G(t,0)); = Cu(z;), i.e. Cu(zj) =0 and z; € H.
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Now let for some n > 0 and some j there exists ¢y such that (G(to,n)); = 0.
Clearly j < to. We may assume that for every k < n and every ¢, (G(t,k)); #0
since otherwise we can apply the induction hypothesis for that k.

If for every t > tp In(to, G(t,n)) = G(1o, n), then for t > |7(2"+1)| we will have
according to Lemma 4.4 that

(G(tO) n))i = <]n(t0)G(t) n)))j = (G(t’ n)).i = Cﬂ(zj) =0,

hence z; € H.

Now assume that there exists t' > 1o with In(to, G(t' + 1,n)) # G(to,n) and.
suppose that ¢’ is the first one with that property. Clearly, j > g(to,n) — otherwise
we will have that (G(g(to,n — 1),n — 1)); = 0, which contradicts the choice of n.
So the fact that G(to,n) # In(to,G(t' + 1,n)) is not due to an assignment of the
type G(t + 1,n) := (L'(G(t,n)),0,...,0) at step ¢t = ¢, since at the preceding step

I+1
t'—1 we would have (G(t', n)); = 2 (if [7(3"+1)] — |7(2n)| > 2) or (G(t',n)); =1 (if
|41 — |7(20)] = 9). ,

Therefore the change of G(t' + 1,n) is caused by an assignment of the type
G(t+1,n) := G(t + 1,no) for some ng < n. It is easy to see that this is preceded
by an operator of the type G(t + 1,no) := (L'(G(2,no)),0,...,0) at the same step

| 141
t =t', where | =t — g(¢,n¢). In other words,
G(t' + 1,n9) = (L'(G(t', n)),0,...,0
( o) = (L(G(t', no)) )
I+1

forl = t'—g(t', no). From here, for g(t', ny) < i < t'+1 we have (G(t'+1,n0)); = 0.
We may claim that g(t',no) = g(t0,n0) — convince yourselves that any change
of g(t,ng) for tg < t < t’ will produce changes in In(to,G(t,n)) and take into
consideration that ¢’ is the first one with that property.

Further, we have g(to,n0) < g(to,n), since ng < n. So

g9(t',no) = g(to, no) < g(to,n) < j

and, obviously, j <ty < t'. Hence (G(t' + 1,n0)); = 0 and using the induction
hypothesis T'(ng) we conclude that z; € H. O
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