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0. INTRODUCTION

In the Recursive Model Theory there are a lot of attempts to characterize
the structures which admit a recursive enumeration. There are some necessary
conditions and some sufficient ones {1]. On the other hand, in many of them the
considerations are restricted to a given class of structures, for example, Boolean
algebras, partially ordered sets and so on [1]. Further, other definitions of recur-
sive enumerations are given [1-3] which restrict or extend the class of structures
satisfying these definitions, and attempts to characterize the corresponding class-
es are made. One of these definitions is the well-known strong constructivization
(recursive presentation) [1]. In [2] Soskova and Soskov have defined another notion
of effective enumeration (recursively enumerable (r.e.) enumeration) of a partial
structure. Thus they have succeeded to characterize the structure satisfying their
definition by means of REDS computability [2] with finitely many constants.
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In connection with this and some other results [4-6] there have been stated
many conjectures, but all of them have been rejected (cf. [7-9]).

In [7, 8], the structures with denumerable domains and unary functions and
predicates which admit effective enumerations have been characterized. It is nat-
ural, using the result in {7, 8], to try to generalize it. One possible way to do this
is the following: Let us consider the least set B*, which contains the domain B of
the structure and is closed under taking ordered pairs. Thus, we can consider all
finite Cartesian products of B as subsets of B* and we consider the basic functions
and predicates as unary functions and predicates on B*. In this case however, we
need to generalize the notion of effective enumeration and introduce the so-called
extended effective enumerations.

In Section 1 we give the necessary definitions.

In Section 2 we prove the following results: 1) Theorem 2.1 that a partial
structure with a denumerable domain admits an effective enumeration iff the cor-
responding structure on B* admits an extended effective enumeration} 2) Theorem
2.17 and Theorem 2.24 that a partial structure with a denumerable domain admits
an effective enumeration iff the family of the types of all elements of the extended
structure on B* has an universal r.e. set, which satisfies certain natural conditions.

1. PRELIMINARIES

In what follows, by N we shall denote the set of all natural numbers. Let II,
L, R be defined as follows:

(G, 5) =242+ 1), LG, ) =4, R((T(G,5)) =,
L(7) = R(t) =i, for all even natural numbers.

Let us,note that for every natural number i exactly one of the following two
conditions is valid:

a) 7 is odd;

b) ¢ is even and ¢ = II(4;, i), for some unique 7; and 1.

Let U be a subset of N**! and J be a family of subsets of N®. The set U is
said to be universal for the family J iff for any a the set {Z | (a,Z) € U} belongs
to the family F and, conversely, for any A from JF there exists such an a that
A={% | (a,T) € U}. If U is an universal set, then by U, we shall denote the set
{z|(a,7) € U}.

If f is a partial function, Dom(f) denotes the domain and Ran(f) denotes the
range of values of the function f.

Let A = (B;6y,...,0k; F1,..., F;) be a denumerable partial structure, i.e. B is
an arbitrary denumerable set, 6, ..., 8; are partial functions of several arguments
on B, and Fy, ..., F; are partial predicates of several arguments on B. We shall
identify the predicates with the (partial) mappings which obtain values 0 or 1,
taking 0 for true and 1 for false.

If every 6; (1 £ i £ k) and every Fj (1 £ j £ 1) are totally defined, then we
say that the-structure 2 is a total one.
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Effective enumeration of the structure 2 is every ordered pair (a,B), where
B = (N; ¢1,...,9% 01,...,01) is a partial structure of the same relational type
as U, and « is a partial surjective mapping of N onto B such that the following
conditions hold:

(i) Dom(a) is recursively enumerable and ¢),..., ¢k, o1,...,01 are partial
recursive;
(ii) For all natural z,, ..., z4,, 1 S 1 £ &,
a(pi(z1,...,2a,)) = 0i(a(z1),. .., a(z4,))
(i) For all natural z;, ..., z3;,, 1 £ j £/,
oi(z1,...,2p;) = Fi(a(zy),. .., a(zy;)).

The next proposition is obvious.

Proposition 1.1. Let A = (B; 6y,...,0k; Fy,...,F}), A" = (B; 6y,...,0k;
Fi,.. . F), A" = (B; 0;,...,0 F{',..., F") be partial structures such that

O, ifFj(S],...,Sb,)gO,
not defined, otherwise, :

0, ifF,-(sl,...,sb,)El,
not defined, otherwise,

F;(sl,...,sb,.)?.‘{

F;'(Sl,...,sb,)a’ {

j=1,...,1L _
If A admits an effective enumeration, then A" and A" admit effective enumera-
tions, as well.

Let B be an arbitrary set, 0 ¢ B and By = BU {0}. Let in addition (-,-) be a
fixed operation ordered pair and assume the set By does not contain ordered pairs.
We define the set B* as follows:

a) For any a € By, a € B*;

b) If a € B* and b € B*, then (a,b) € B*.

Consequently, B* is the least set which contains the set By and is closed under
the operation ordered pair (-, -).

On the set of all partially defined functions on B* we define two operations —
composition and combination in the following way:

a) The composition of the functions ¢; and ¢; is denoted by ;42 and

p12(8) = p1(p2(s));
b) The combination of the functions ¢; and @, is denoted by (@1, ¢2) and

(1, 2)(s) = (1 (s), wa(s)).
The functions 7 and & are defined on B* as follows:
m({a,b)) = a; &({a,d)) =b, for any elements a, b of B*;
w(a) = é(a) = (0,0), ifa€ B;
7(0) = 6(0) = 0.




For any natural positive number k and arbitrary elements sy, ..., s; the ordered
k-tuple (si,...,s;) 1s defined in the usual way:

(s1) = s1; (81,18, Sk+1) = ({51, ..., 58), Sk+1)-

Let B¥ = {{s1,...,5k) | s1 € B &...& s¢ € B; this way B* C B*. If p is a
k-ary partial function on B, then it is natural to think of ¢ as a partial function
on B* or even on B*, and in addition if sq,. .., s; are elements of B, then we shall
write ©({s1,...,s%)) instead of ¢(s1,...,5:) and conversely; thus in this case we
can think of ¢ as a partial unary function on B*.

Let £ be the first order language which consists of £ unary functional symbols
fi,..., fr and l unary predicate symbols 7}, ..., T;. Let Ty be a new unary predicate
symbol which is intended to represent the unary total predicate Fy = As.0 on B*.

We shall define functional terms and functional termal formulae (in language
£) as follows: :

a) If f is a functional symbol in the language £, then f is a functional term;

b) If 7! and 72 are functional terms, then 772 and (7!, 7?) are functional
terms;

c) If 7 is a functional term and T is a predicate symbol, then T('r) and -T(7)
are functipnal termal formulae.

Let A = (B;0,,...,0k; Fy,..., Fi) be a partial structure and A" = (B*; 0y, ...,
Ox; F1,..., Fi) be the corresponding partial structure on B*. If 7 is a functional
term in the language £, we shall define the value o+ of the term 7 in the structure
24*, which will be a partial function on B*:

a)If f=fi, 1 £1 <k, is a functional symbol in the language £, then fy- is
the function 6;; -

b) If 7 = 7!72, then 7y- is the composition of the partial functions Tﬁ. and
Tqe; If 7= (7', 72), then 79+ is the combination of the functions 7. and 72..

Analogously, if II is a functional termal formula in the language £, we define
a value Ily~ of the functional termal formula I in the structure A* and the value
[y in the structure U™ will be a partially defined predicate on B*:

a) If I = Tj(r), 1< j <1, then the partial predicate Ily- is defined as
follows:

My (s) = Fj(ta+(s)) for any element s € B*,
b) If I = =T(7), where T' is a predicate symbol, then the partial predicate
IIo+ 1s defined as follows:
1, if T+ (s) =0,
g (s) =< 0, if Ty (8) 2 1,
not defined, if Ty-(s) is not defined.

We assume fixed an effective coding of the functional terms and the functional
termal formulae of the language £. If v is a natural number, then we denote by 7V
(I1¥) the functional term (functional termal formula) with a code v.

If s is an element of B*, then Ty+[s] (the type of s) is the set of natural

numbers
{v |11, is a functional termal formula & II}.(s) = 0}.
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2. THE MAIN RESULTS

In this section we shall extend the notion effective enumeration.

Suppose a partial structure % = (B;0;,...,0; F1, ..., F}) is given, where
0; is an aj-ary partial function on B, 1 £ ¢ < k, and Fj is a bj-ary predicate
on B, 1 <£j <!, and B is a denumerable set. We shall consider the structure
A* = (B*;6y,...,0k; Fy,..., F;), where all the functions and predicates 6y, ..., 0k;
Fi,..., F, are unary on B*.

Eztended effective enumeration of the structure A* is every ordered pair
(a*,B"), where B* = (N; ¢f,...,9}; 0},...,07) is a partial structure with
unary functions and predicates and «* is a partial surjective mapping of N on-
to B* such that the following conditions hold:

(i) Dom(a*) is recursively enumerable and ¢3,..., ¢}, 0,..., 0] are partially
recursive;

(i) a*(¢] (z)) = 0;(a*(z)) for all natural z, 1 < 7 £ k;

(iii) o} (z) = Fj(a*(z)) for all natural z,1 £ j £ I;

(iv) o*~1}(B) and o*~!(B* \ B) are recursively separable and o*~'(0) = {0};

(v) There exist total recursive functions II', L', R’ such that:

2) o*(IF(2,9)) = (a*(2), " (v));
b) If o*(z) = (a,b), then a*(L'(z)) = a and o*(R'(z)) = b.

We shall prove first the following theorem:

Theorem 2.1. Given a partial structure A = (B;6,,...,0k; Fy,..., F;), where
B is a denumerable set, A admits an effective enumeration iff the corresponding
structure A* = (B*;0y,...,0k; F1,..., F1) admits an ertended effective enumera-
tion.

Proof. First, let A = (B;6y,...,0k; F1,..., Fi) admit an effective enumeration
(a,B). We define the mapping a” : N ——» B as follows:

a) a*(2(i+ 1)) = afi), «(0)=0;

b) a*(I(i1, i2)) = (a*(i1), " (i2))-

The next Jemmas follow from the definitions of ™ and II.

L4

Lemma 2.2. For any natural z and y the following conditions hold:

a) a"(Il(z, y)) = (a*(z),a"(y));
b) If a*(z) = (a,b), then a*(L(z)) = a and o*(R(z)) = b.

Lemma 2.3. o*~!(B) and o*~(B* \ B) are recursively separable.

The definition of a* shows that Dom(a*) is defined by the next inductive way:
a) 0 € Dom(a*) and if i € Dom(a), then 2(i + 1) € Dom(a*);

b) If i; € Dom(a*) and i; € Dom(a*), then II(#;,i3) € Dom(a®).

Therefore, '

Lemma 2.4. Dom(a™) is r.e.
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Further, let the sequence of functions {IIx}ren 0} be defined in the following
manner:

a) Hl(il) = Q(il + 1); .

b) Hk+1(i1, ceey ik,ik+1) = H(Hk(il, ey ik), ik+1).

The next lemmas are obvious.

Lemma 2.5. Letiy,...,1 be natural numbers and a(iy) = sy,. .., a(ix) = s
Then o (Ug(dy, ..., %)) = (S1,..., Sk).

Lemma 2.6. Ran(a*) = B*.
Let the functions ¢7,...,9f;07,...,0f be defined by the next‘equivé.lences:
pi(z) 2y <> Jzy...3zq,(y = Mi(pi(2y,...,24,)) & z =1, (z1,...,24,)),
i=1,...,k;
Coi(@z) =y = 3y F(y oz, 0,) & =1 (21,. .., 7)),

j=1,...,L
From these definitions the next lemma follows immediately.

Lemma 2.7. ¢},...,¢%,01,...,0] are partial recursive functions.
Let Ny = {Hk(il,...,ik) | HhEeEN& ... & 1k EN}

Lemma 2.8. Let i € Dom(a*). Then for all natural k 2 1 the following
equivalence is true:
i €Ny <= a*(i) € B, (%)

Proof. By induction on k.

Ifi € Ny, then 1 = II1(4;) = 2(4, +1) for some natural #; and a*(i) = a(i;) € B.

If a*(7) € B, then it is clear that i = 2(7; + 1) and i € N;.

Let us assume that the equivalence (*) is true for some natural £ > 1.

If7 € Nk-}-l.; then 7 = Hk+1(i1, *hay ik, ik+1) = H(Hk(t;l, oy ik), ik-l-l) and let
fix i = Mi(41,...,%). According to the induction hypothesis, a*(i’) € B* and
a‘;c(::ﬁ.{.]_) € B. Then o*(i) 2 o (I(Ik (i1, - .., i), ik+1))) = (@*(¥'),0*(ik+1)) €
BFTH,

If (i) € B**!, then o*(i) is defined by the second clause of the definition,
i e a*(i) = (a*(?'),a" (")), where a*(i') € B*, o*(i") € B and i = II(#,").
According to the induction hypothesis, i’ € Ny and i € N;. Thus i € Nj4;.

Lemma 2.9. For any z €N the following conditional equalities hold:
a’(pi(z)) = 0i(a”(z)), i=1,... k.

Proof. We shall consider two cases.

Case 1. z ¢ N,;,. Then z ¢ Dom(p;), i.e. 8;(a*(z)) is not defined.

If z € Dom(a®), then o*(z) ¢ B, i.e. 6;(a*(z)) is not defined. If z ¢
Dom(a*), then obviously 6;(«*(z)) is not defined.
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Case 2. z € Ny,. Then z = II4,(4,...,1,,) for some natural iy,...,17,, and
o (9" (2)) = 0" (Ma(i(in, . ia,)) = alili, - i) = (i), -, i)
= 0;({a(in), ..., afia,))) = 0i(a" (Mg, (31, . .., 14,))) = 0;(a*(2)).

Lemma 2.10. For any z € N the following conditional equalities hold:
oi(z) = Fi(e™(z)), j=1,...,1L

Proof. Analogously to Lemma 2.9.

So, we have that if we fix [I' = I, L’ = L and R’ = R, then the conditions
(1) = (v) of extended effective enumeration are fulfilled.

Conversly, let a partial structure A = (B;8,,...,0k; Fy,..., F7) be given and
the structure A* = (B*;0,,...,0k; F1,..., F;) admit an extended effective enumer-
ation (a*,B"), where B" = (N; ¢1,...,9%; 01,...,01) is a partial structure with
unary functions and predicates and « is a partial surjective mapping of N onto B*
such that the conditions (1) — (v) hold and the recursive functions II', L', R’ which

satisfy (v) are fixed.
We shall define an enumeration (a, B) of 2. For this purpose for every positive
natural number k we define the sets N, N} as follows:

N; = {z | z € Dom(a") & o*(z) € Bk}, Ny = {z | z € Dom(a") & a*(z) ¢ Bk}.
Then

a*(z), if z € Ny,

not defined, otherwise.

o(z) = {

Lemma 2.11. Dom(a) is r.e.

In this case we define the sequence {II}}rem {0} by means of the following
inductive definition:
b) H;H-l(il’ ey ik, ik+1) = H'(H’k(ll, o u ey ik), ik+1).

Lemma 2.12. For every positive natural number k, if i; € Dom(a) &...&
it € Dom(a), then I} (iy,...,1t) € Dom(a*) & a* (I} (i1, ..., 1)) € B* and

(Q(il), e ,a(iai)) = Q*(H;C(il, e oy 1k))
Proof. By standard unduction on k.

Lemma 2.13. For every positive natural number k there ezists a recursive set
My such that N}, C My and Ny C N\ M;.

Proof. By induction. If k& = 1, then let M; be a recursive set such that
o*~}(B) C M; and o*~}(B* \ B) C N\ M;. Then N} C M; and NY C N\ M;.

Let us assume that there exists a recursive set My such that N C M; and
Ny C N\ M. Set My41 = {z | L'(z) € My & R'(z) € M) &z # 0 &z ¢ M,}.

If z € Ni,,, then z € Dom(a*) and a*(z) = (b1, b2), where a*(L/(z)) = b, €
B* and o*(R/(z)) = bs € B. Therefore, £ € My4.
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Let z € Ny, ,. Then z =0or z € M; or z ¢ M;.
If z = 0 or z € My, then it is obvious that z ¢ Mj4,. :
- Ifz ¢ M, then z ¢ Ni, since a™(z) = (b),bs) = a*(L'(z)), a*(R'(z))).
“Therefore, by ¢ B* or by ¢ B, i.e. L'(z) ¢ My or R'(z) ¢ M. Again z ¢ M,
and Lemma 2.13 is proved.
Let us define the functions ¢y, ..., ¢k, 01,...,07 in the following way:

ei(1,...,2a;) Zo; (I (21,...,24,)), i=1,...,k,

gj(@1,. .. o) Zoj(M (z1,...,255)), F=1,...,1

Lemma 2.14. ¢;,...,9k,01,...,0; are partial recursive functions.

Lemma 2.15. For all i, 1 < i £ k, and for any natural numbers Ti,...,Tq,
the following conditional equalities hold:

a(pi(z1,...,2q,)) = 0i(a(z)),...,a(zs;)), i=1,...,k.

Proof.  algi(zr,..,20)) = algi (I, (21, ., 2a.))
= a*(¢; (Mg, (1, - ., Ta,))) = 0}‘(0*(11:,.(:1:1, ooy 28,))) 2 0:({a(zy), - . ., a(z,,)))
= bi(a(zy),...,a(zy,)), i =1,....k

Lemma 2.16. For all j, 1 £ j £ 1, and for any natural numbers zy, ..., s,
the following conditional equalities hold:

oi(z1, ..., ;) = Fij(a(zy),...,a(zs,)), j=1,...,0
Proof. Analogously to Lemma 2.15.

Theorem 2.1 is proved.

Theorem 2.17. A partial structure A with a denumerable domain admits an
effective enumeration iff the family of the types of all elements of the structure A"
has an universal r.e. set U which satisfies the next conditions:

(1) The type of the element 0 is recursive set;

(1) If Ly = U{Ty+(s] | s € B} and L = U{Tq-[s]|s € B*\ B}, then L,
and Lo are recursively separable;

(i11)) There ezist such total recursive functions I', L', R' that:

a) If Uy, = Ty-[s1] and U, = Tys[s2], then Tq-[(s1,52)] = Unt'(z,,22);
b) If To-[{s1,52)] = Uz, then Upi(z) = Tas[s;] and Uri(z) = Ta[s2].

Proof. Analogously to [8] suppose that the partial structure 2 admits an
effective enumeration (a,B). Then the partial structure A* admits an extended

effective enumeration (a*, B%), where B* = (N; ¢},...,¢}; 07,...,07). According
to [8] we can consider that a* is totally defined over N. A simple construction
shows that there exists a primitive recursive in {¢],..., ¥}, 01,...,07 } function ¥

such that for each functional termal formula II¥ with code v
(v, z) = Ty (o (2))
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for all z of N. Consequently, ¥ is partially recursive. Then it is obvious that the
set ‘

U={(z,v) | ¥(v,z) =0 & v is a code of a functional termal formula}

is r.e. and universal for the family of the types of all elements of the structure 2*
which satisfies the conditions (i) - (iii).

Suppose now that the types of all elements of the structure 2A* are r.e. and
that the family of all these types has an universal r.e. set U! which satisfies the
conditions (i) — (iii). Let U = {(a,z) | U} is a type of some element of B}. It is
obvious that the set U is r.e. and satisfies the conditions (i) — (iii), as well. We may
~ assume that for every z there exist infinitely many y such that U, = Uy [cf. 7, 8].

Set, ' :

p; = Az Il(i,z), 1=1,...,k
o(z,y) = I(0, II(z, y));
Np = N\ (Ran(¢])U...URan(p},) UIl).

For any natural number z, let B; be the set {s | s € B & Tyg-[s] = U} of
all elements of B with type U, and a® be an arbitrary surjective mapping of Ny
onto B, satisfying the equalities a°({y | Uz = Uy}) = Bz, ¢ € N. Evidently,
Dom(a®) = Ny is r.e.

We define the partial mapping a* of N onto B* by the inductive clauses:

If z € Ny, then o*(z) = o°(z);

fz=1I(y),1 $i<k, a*(y) =sandbi(s) =t, then a*(z) = ¢,

If 2 = I1(0,I(z, y)), a*(z) = 51 and a(y)* = sz, then a*(2) = (s1, s2).

The proofs of the next simple lemmas are analogous of those in (7, 8].

Lemma 2.18. For everyz € N and 1, 1 <i<k,
a(p; () = " ((1,2)) = b;(a’(z)).
Let us denote by B the partial structure (N; 7,...,9:).
Corollary 2.19. Let 7 be a functional term and y € N. Then
o’ (rg(y)) = 2 (a”(y))-

Lemma 2.20. There ezisls an effective way to define, for every z of N, an
element y of No.and a functional term 7 such that z = T(y).

Lemma 2.21. There ezists an effective way to deﬁné, for every z of N, an
element y of Ny and a functional term T such that o*(z) = 1o+ (" (y))-

Lemma 2.22. Dom(a)* is recursively enumerable.

Finally, let us define the partial predicates o7,...,0; on N using the condi-
tional equalities
0, | if Fj(a*(z)) =0,
oi(z) =< 1, if 2 Fj(a*(z)) =0,
undefined, otherwise,

15



7 =1,...,1. Analogously, it follows:

Lemma 2.23. The predicates 07, ...,0] are partially recursive.

Thus, it is proven that (a*, (N; ¢1,...,95;01,...,07)) is an extended effective
enumeration of the structure A*.
It is easy to see that the next theorem is also valid.

Theorem 2.24. A partial structure % with a denumerable domain admits an
effective enumeration iff the family of the types of all elements of the structure A
has an universal r.e. set U such that there erist total recursive functions II’, L', R’
satisfying the conditions:

*) If Wz- = Tmt [(81,82)], then WLI(,,) = Tg- [81] and WRI(,) Tm‘ [82];

**) ]f le = Tm° [81] and sz = Tqr [32] then Ta° [(31, 82)] = WH’(zl,zz)'

Here we use W, to denote the e-th recursively enumerable (r.e.) set.
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