ГОДИШНИК НА СОФИЙСКИЯ УНИВЕРСИТЕТ "СВ. КЛИМЕНТ ОХРИДСКИ"

ФАКУЛТЕТ ПО МАТЕМАТИКА И ИНФОРМАТИКА Книга 1— Математика и механика Том 92, 1998

ANNUAIRE DE L'UNIVERSITE DE SOFIA "ST. KLIMENT OHRIDSKI"

FACULTE DE MATHEMATIQUES ET INFORMATIQUE
Livre 1 — Mathématiques et Mecanique
Tome 92, 1998

CHARACTERIZATION OF THE STRUCTURES WHICH ADMIT EFFECTIVE ENUMERATIONS*

ANGEL DITCHEV

In this paper a characterization of the partial structures with denumerable domains which admit an effective enumeration is given.

Keywords: effective enumeration, extended effective enumeration, recursive model 1991/95 Math. Subject Classification: 03D45, 03C57

0. INTRODUCTION

In the Recursive Model Theory there are a lot of attempts to characterize the structures which admit a recursive enumeration. There are some necessary conditions and some sufficient ones [1]. On the other hand, in many of them the considerations are restricted to a given class of structures, for example, Boolean algebras, partially ordered sets and so on [1]. Further, other definitions of recursive enumerations are given [1-3] which restrict or extend the class of structures satisfying these definitions, and attempts to characterize the corresponding classes are made. One of these definitions is the well-known strong constructivization (recursive presentation) [1]. In [2] Soskova and Soskov have defined another notion of effective enumeration (recursively enumerable (r.e.) enumeration) of a partial structure. Thus they have succeeded to characterize the structure satisfying their definition by means of REDS computability [2] with finitely many constants.

^{*} Research partially supported by the Ministry of Education, Contract No M-604, 1997.

In connection with this and some other results [4-6] there have been stated many conjectures, but all of them have been rejected (cf. [7-9]).

In [7, 8], the structures with denumerable domains and unary functions and predicates which admit effective enumerations have been characterized. It is natural, using the result in [7, 8], to try to generalize it. One possible way to do this is the following: Let us consider the least set B^* , which contains the domain B of the structure and is closed under taking ordered pairs. Thus, we can consider all finite Cartesian products of B as subsets of B^* and we consider the basic functions and predicates as unary functions and predicates on B^* . In this case however, we need to generalize the notion of effective enumeration and introduce the so-called extended effective enumerations.

In Section 1 we give the necessary definitions.

In Section 2 we prove the following results: 1) Theorem 2.1 that a partial structure with a denumerable domain admits an effective enumeration iff the corresponding structure on B^* admits an extended effective enumeration; 2) Theorem 2.17 and Theorem 2.24 that a partial structure with a denumerable domain admits an effective enumeration iff the family of the types of all elements of the extended structure on B^* has an universal r.e. set, which satisfies certain natural conditions.

1. PRELIMINARIES

In what follows, by \mathbb{N} we shall denote the set of all natural numbers. Let Π , L, R be defined as follows:

$$\Pi(i,j) = 2^{i+1}(2j+1), \quad L((\Pi(i,j)) = i, \quad R((\Pi(i,j)) = j,$$

L(i) = R(i) = i, for all even natural numbers.

Let us note that for every natural number i exactly one of the following two conditions is valid:

- a) i is odd;
- b) i is even and $i = \Pi(i_1, i_2)$, for some unique i_1 and i_2 .

Let U be a subset of \mathbb{N}^{n+1} and \mathcal{F} be a family of subsets of \mathbb{N}^n . The set U is said to be universal for the family \mathcal{F} iff for any a the set $\{\overline{x} \mid (a, \overline{x}) \in U\}$ belongs to the family \mathcal{F} and, conversely, for any A from \mathcal{F} there exists such an a that $A = \{\overline{x} \mid (a, \overline{x}) \in U\}$. If U is an universal set, then by U_a we shall denote the set $\{\overline{x} \mid (a, \overline{x}) \in U\}$.

If f is a partial function, Dom(f) denotes the domain and Ran(f) denotes the range of values of the function f.

Let $\mathfrak{A} = (B; \theta_1, \ldots, \theta_k; F_1, \ldots, F_l)$ be a denumerable partial structure, i.e. B is an arbitrary denumerable set, $\theta_1, \ldots, \theta_k$ are partial functions of several arguments on B, and F_1, \ldots, F_l are partial predicates of several arguments on B. We shall identify the predicates with the (partial) mappings which obtain values 0 or 1, taking 0 for true and 1 for false.

If every θ_i $(1 \le i \le k)$ and every F_j $(1 \le j \le l)$ are totally defined, then we say that the structure \mathfrak{A} is a total one.

Effective enumeration of the structure $\mathfrak A$ is every ordered pair $(\alpha, \mathfrak B)$, where $\mathfrak B = (\mathbb N; \varphi_1, \ldots, \varphi_k; \sigma_1, \ldots, \sigma_l)$ is a partial structure of the same relational type as $\mathfrak A$, and α is a partial surjective mapping of $\mathbb N$ onto B such that the following conditions hold:

- (i) Dom(α) is recursively enumerable and φ₁,..., φ_k, σ₁,..., σ_l are partial recursive;
 - (ii) For all natural x₁, ..., x_{ai}, 1 ≤ i ≤ k,

$$\alpha(\varphi_i(x_1, \dots, x_{a_i})) \cong \theta_i(\alpha(x_1), \dots, \alpha(x_{a_i})).$$

(iii) For all natural $x_1, \ldots, x_{b_i}, 1 \leq j \leq l$,

$$\sigma_j(x_1,\ldots,x_{b_j}) \cong F_j(\alpha(x_1),\ldots,\alpha(x_{b_j})).$$

The next proposition is obvious.

Proposition 1.1. Let $\mathfrak{A} = \langle B; \theta_1, \dots, \theta_k; F_1, \dots, F_l \rangle$, $\mathfrak{A}' = \langle B; \theta_1, \dots, \theta_k; F'_1, \dots, F'_l \rangle$, $\mathfrak{A}'' = \langle B; \theta_1, \dots, \theta_k; F''_1, \dots, F''_l \rangle$ be partial structures such that

$$F'_j(s_1,\ldots,s_{b_j})\cong \left\{ egin{array}{ll} 0, & ext{if } F_j(s_1,\ldots,s_{b_j})\cong 0, \\ ext{not defined}, & ext{otherwise}, \end{array} \right.$$

$$F_j''(s_1,\ldots,s_{b_j})\cong \left\{ egin{array}{ll} 0, & ext{if } F_j(s_1,\ldots,s_{b_j})\cong 1, \\ ext{not defined,} & ext{otherwise,} \end{array} \right.$$

j = 1, ..., l.

If A admits an effective enumeration, then A' and A" admit effective enumerations, as well.

Let B be an arbitrary set, $0 \notin B$ and $B_0 = B \cup \{0\}$. Let in addition $\langle \cdot, \cdot \rangle$ be a fixed operation ordered pair and assume the set B_0 does not contain ordered pairs. We define the set B^* as follows:

- a) For any $a \in B_0$, $a \in B^*$;
- b) If $a \in B^*$ and $b \in B^*$, then $(a, b) \in B^*$.

Consequently, B^* is the least set which contains the set B_0 and is closed under the operation ordered pair $\langle \cdot, \cdot \rangle$.

On the set of all partially defined functions on B^* we define two operations composition and combination in the following way:

a) The composition of the functions φ_1 and φ_2 is denoted by $\varphi_1\varphi_2$ and

$$\varphi_1\varphi_2(s)\cong\varphi_1(\varphi_2(s));$$

b) The combination of the functions φ_1 and φ_2 is denoted by $\langle \varphi_1, \varphi_2 \rangle$ and

$$(\varphi_1, \varphi_2)(s) \cong \langle \varphi_1(s), \varphi_2(s) \rangle.$$

The functions π and δ are defined on B^* as follows:

$$\pi(\langle a, b \rangle) = a;$$
 $\delta(\langle a, b \rangle) = b,$ for any elements a, b of B^* ;

$$\pi(a) = \delta(a) = \langle 0, 0 \rangle$$
, if $a \in B$;

$$\pi(0) = \delta(0) = 0.$$

For any natural positive number k and arbitrary elements s_1, \ldots, s_k the ordered k-tuple $\langle s_1, \ldots, s_k \rangle$ is defined in the usual way:

$$\langle s_1 \rangle = s_1; \quad \langle s_1, \ldots, s_k, s_{k+1} \rangle = \langle \langle s_1, \ldots, s_k \rangle, s_{k+1} \rangle.$$

Let $B^k = \{\langle s_1, \ldots, s_k \rangle \mid s_1 \in B \& \ldots \& s_k \in B; \text{ this way } B^k \subset B^*. \text{ If } \varphi \text{ is a } k\text{-ary partial function on } B, \text{ then it is natural to think of } \varphi \text{ as a partial function on } B^k \text{ or even on } B^*, \text{ and in addition if } s_1, \ldots, s_k \text{ are elements of } B, \text{ then we shall write } \varphi(\langle s_1, \ldots, s_k \rangle) \text{ instead of } \varphi(s_1, \ldots, s_k) \text{ and conversely; thus in this case we can think of } \varphi \text{ as a partial unary function on } B^*.$

Let \mathcal{L} be the first order language which consists of k unary functional symbols f_1, \ldots, f_k and l unary predicate symbols T_1, \ldots, T_l . Let T_0 be a new unary predicate symbol which is intended to represent the unary total predicate $F_0 = \lambda s.0$ on B^* .

We shall define functional terms and functional termal formulae (in language \mathfrak{L}) as follows:

- a) If f is a functional symbol in the language \mathcal{L} , then f is a functional term;
- b) If τ^1 and τ^2 are functional terms, then $\tau^1\tau^2$ and (τ^1,τ^2) are functional terms;
- c) If τ is a functional term and T is a predicate symbol, then $T(\tau)$ and $\neg T(\tau)$ are functional termal formulae.

Let $\mathfrak{A} = (B; \theta_1, \ldots, \theta_k; F_1, \ldots, F_l)$ be a partial structure and $\mathfrak{A}^* = (B^*; \theta_1, \ldots, \theta_k; F_1, \ldots, F_l)$ be the corresponding partial structure on B^* . If τ is a functional term in the language \mathfrak{L} , we shall define the value $\tau_{\mathfrak{A}^*}$ of the term τ in the structure \mathfrak{A}^* , which will be a partial function on B^* :

- a) If $f = f_i$, $1 \le i \le k$, is a functional symbol in the language \mathfrak{L} , then $f_{\mathfrak{A}^*}$ is the function θ_i ;
- b) If $\tau = \tau^1 \tau^2$, then $\tau_{\mathfrak{A}^*}$ is the composition of the partial functions $\tau_{\mathfrak{A}^*}^1$ and $\tau_{\mathfrak{A}^*}^2$; If $\tau = \langle \tau^1, \tau^2 \rangle$, then $\tau_{\mathfrak{A}^*}$ is the combination of the functions $\tau_{\mathfrak{A}^*}^1$ and $\tau_{\mathfrak{A}^*}^2$.

Analogously, if Π is a functional termal formula in the language \mathfrak{L} , we define a value $\Pi_{\mathfrak{A}^*}$ of the functional termal formula Π in the structure \mathfrak{A}^* and the value $\Pi_{\mathfrak{A}^*}$ in the structure \mathfrak{A}^* will be a partially defined predicate on B^* :

a) If $\Pi = T_j(\tau)$, $1 \le j \le l$, then the partial predicate $\Pi_{\mathfrak{A}^*}$ is defined as follows:

$$\Pi_{\mathfrak{A}^*}(s) \cong F_j(\tau_{\mathfrak{A}^*}(s))$$
 for any element $s \in B^*$;

b) If Π = ¬T(τ), where T is a predicate symbol, then the partial predicate Π_{21*} is defined as follows:

$$\Pi_{\mathfrak{A}^{\bullet}}(s) \cong \begin{cases} 1, & \text{if } T_{\mathfrak{A}^{\bullet}}(s) \cong 0, \\ 0, & \text{if } T_{\mathfrak{A}^{\bullet}}(s) \cong 1, \\ \text{not defined, } & \text{if } T_{\mathfrak{A}^{\bullet}}(s) \text{ is not defined.} \end{cases}$$

We assume fixed an effective coding of the functional terms and the functional termal formulae of the language \mathcal{L} . If v is a natural number, then we denote by τ^v (Π^v) the functional term (functional termal formula) with a code v.

If s is an element of B^* , then $\mathbf{T}_{\mathfrak{A}^*}[s]$ (the type of s) is the set of natural numbers

$$\{v \mid \Pi_v \text{ is a functional termal formula & } \Pi_{\mathfrak{A}^{\bullet}}^v(s) \cong 0\}.$$

2. THE MAIN RESULTS

In this section we shall extend the notion effective enumeration.

Suppose a partial structure $\mathfrak{A} = (B; \theta_1, \ldots, \theta_k; F_1, \ldots, F_l)$ is given, where θ_i is an a_i -ary partial function on B, $1 \leq i \leq k$, and F_j is a b_j -ary predicate on B, $1 \leq j \leq l$, and B is a denumerable set. We shall consider the structure $\mathfrak{A}^* = (B^*; \theta_1, \ldots, \theta_k; F_1, \ldots, F_l)$, where all the functions and predicates $\theta_1, \ldots, \theta_k; F_1, \ldots, F_l$ are unary on B^* .

Extended effective enumeration of the structure \mathfrak{A}^* is every ordered pair $\langle \alpha^*, \mathfrak{B}^* \rangle$, where $\mathfrak{B}^* = (\mathbb{N}; \varphi_1^*, \dots, \varphi_k^*; \sigma_1^*, \dots, \sigma_l^*)$ is a partial structure with unary functions and predicates and α^* is a partial surjective mapping of \mathbb{N} onto B^* such that the following conditions hold:

- (i) $\text{Dom}(\alpha^*)$ is recursively enumerable and $\varphi_1^*, \ldots, \varphi_k^*, \sigma_1^*, \ldots, \sigma_l^*$ are partially recursive;
 - (ii) $\alpha^*(\varphi_i^*(x)) \cong \theta_i(\alpha^*(x))$ for all natural $x, 1 \leq i \leq k$;
 - (iii) $\sigma_j^*(x) \cong F_j(\alpha^*(x))$ for all natural $x, 1 \leq j \leq l$;
 - (iv) $\alpha^{*-1}(B)$ and $\alpha^{*-1}(B^* \setminus B)$ are recursively separable and $\alpha^{*-1}(0) = \{0\}$;
 - (v) There exist total recursive functions Π' , L', R' such that:
 - a) $\alpha^*(\Pi'(x,y)) \cong \langle \alpha^*(x), \alpha^*(y) \rangle$;
 - b) If $\alpha^*(x) \cong (a, b)$, then $\alpha^*(L'(x)) \cong a$ and $\alpha^*(R'(x)) \cong b$.

We shall prove first the following theorem:

Theorem 2.1. Given a partial structure $\mathfrak{A} = (B; \theta_1, \ldots, \theta_k; F_1, \ldots, F_l)$, where B is a denumerable set, \mathfrak{A} admits an effective enumeration iff the corresponding structure $\mathfrak{A}^* = (B^*; \theta_1, \ldots, \theta_k; F_1, \ldots, F_l)$ admits an extended effective enumeration.

Proof. First, let $\mathfrak{A} = (B; \theta_1, \dots, \theta_k; F_1, \dots, F_l)$ admit an effective enumeration (α, \mathfrak{B}) . We define the mapping $\alpha^* : \mathbb{N} \longrightarrow B^*$ as follows:

- a) $\alpha^*(2(i+1)) \cong \alpha(i), \quad \alpha(0) = 0;$
- b) $\alpha^*(\Pi(i_1,i_2)) \cong \langle \alpha^*(i_1), \alpha^*(i_2) \rangle$.

The next lemmas follow from the definitions of α^* and Π .

Lemma 2.2. For any natural x and y the following conditions hold:

- a) $\alpha^*(\Pi(x,y)) \cong \langle \alpha^*(x), \alpha^*(y) \rangle$;
- b) If $\alpha^*(x) \cong \langle a, b \rangle$, then $\alpha^*(L(x)) \cong a$ and $\alpha^*(R(x)) \cong b$.

Lemma 2.3. $\alpha^{*-1}(B)$ and $\alpha^{*-1}(B^* \setminus B)$ are recursively separable.

The definition of α^* shows that $Dom(\alpha^*)$ is defined by the next inductive way:

- a) $0 \in \text{Dom}(\alpha^*)$ and if $i \in \text{Dom}(\alpha)$, then $2(i+1) \in \text{Dom}(\alpha^*)$;
- b) If $i_1 \in \text{Dom}(\alpha^*)$ and $i_2 \in \text{Dom}(\alpha^*)$, then $\Pi(i_1, i_2) \in \text{Dom}(\alpha^*)$.

Therefore,

Lemma 2.4. $Dom(\alpha^*)$ is r.e.

Further, let the sequence of functions $\{\Pi_k\}_{k\in\mathbb{N}\setminus\{0\}}$ be defined in the following manner:

- a) $\Pi_1(i_1) = 2(i_1+1);$
- b) $\Pi_{k+1}(i_1,\ldots,i_k,i_{k+1}) = \Pi(\Pi_k(i_1,\ldots,i_k),i_{k+1}).$

The next lemmas are obvious.

Lemma 2.5. Let i_1, \ldots, i_k be natural numbers and $\alpha(i_1) \cong s_1, \ldots, \alpha(i_k) \cong s_k$. Then $\alpha^*(\Pi_k(i_1, \ldots, i_k)) \cong \langle s_1, \ldots, s_k \rangle$.

Lemma 2.6. Ran(α^*) = B^* .

Let the functions $\varphi_1^*, \ldots, \varphi_k^*; \sigma_1^*, \ldots, \sigma_l^*$ be defined by the next equivalences:

$$\varphi_i^*(x) \cong y \iff \exists x_1 \dots \exists x_{a_i} (y \cong \Pi_1(\varphi_i(x_1, \dots, x_{a_i})) \& x = \Pi_{a_i}(x_1, \dots, x_{a_i})),$$

$$i = 1, \dots, k;$$

$$\sigma_j^*(x) \cong y \iff \exists x_1 \dots \exists x_{b_j} (y \cong \sigma_j(x_1, \dots, x_{b_j}) \& x = \Pi_{b_j}(x_1, \dots, x_{b_j})),$$

$$j = 1, \dots, l.$$

From these definitions the next lemma follows immediately.

Lemma 2.7. $\varphi_1^*, \ldots, \varphi_k^*, \sigma_1^*, \ldots, \sigma_l^*$ are partial recursive functions.

Let
$$\mathbb{N}_k = {\{\Pi_k(i_1,\ldots,i_k) \mid i_1 \in \mathbb{N} \& \ldots \& i_k \in \mathbb{N}\}}.$$

Lemma 2.8. Let $i \in \text{Dom}(\alpha^*)$. Then for all natural $k \geq 1$ the following equivalence is true:

$$i \in \mathbb{N}_k \iff \alpha^*(i) \in B^k.$$
 (*)

Proof. By induction on k.

If $i \in \mathbb{N}_1$, then $i = \Pi_1(i_1) = 2(i_1+1)$ for some natural i_1 and $\alpha^*(i) = \alpha(i_1) \in B$. If $\alpha^*(i) \in B$, then it is clear that $i = 2(i_1+1)$ and $i \in \mathbb{N}_1$.

Let us assume that the equivalence (*) is true for some natural $k \geq 1$.

If $i \in \mathbb{N}_{k+1}$, then $i = \Pi_{k+1}(i_1, \ldots, i_k, i_{k+1}) = \Pi(\Pi_k(i_1, \ldots, i_k), i_{k+1})$ and let fix $i' = \Pi_k(i_1, \ldots, i_k)$. According to the induction hypothesis, $\alpha^*(i') \in B^k$ and $\alpha^*(i_{k+1}) \in B$. Then $\alpha^*(i) \cong \alpha^*(\Pi(\Pi_k(i_1, \ldots, i_k), i_{k+1})) \cong \langle \alpha^*(i'), \alpha^*(i_{k+1}) \rangle \in B^{k+1}$.

If $\alpha^*(i) \in B^{k+1}$, then $\alpha^*(i)$ is defined by the second clause of the definition, i. e. $\alpha^*(i) \cong \langle \alpha^*(i'), \alpha^*(i'') \rangle$, where $\alpha^*(i') \in B^k$, $\alpha^*(i'') \in B$ and $i = \Pi(i', i'')$. According to the induction hypothesis, $i' \in \mathbb{N}_k$ and $i'' \in \mathbb{N}_1$. Thus $i \in \mathbb{N}_{k+1}$.

Lemma 2.9. For any $x \in \mathbb{N}$ the following conditional equalities hold:

$$\alpha^*(\varphi_i^*(x)) \cong \theta_i(\alpha^*(x)), \quad i = 1, \dots, k.$$

Proof. We shall consider two cases.

Case 1. $x \notin \mathbb{N}_{a_i}$. Then $x \notin \text{Dom}(\varphi_i)$, i. e. $\theta_i(\alpha^*(x))$ is not defined.

If $x \in \text{Dom}(\alpha^*)$, then $\alpha^*(x) \notin B^{a_i}$, i. e. $\theta_i(\alpha^*(x))$ is not defined. If $x \notin \text{Dom}(\alpha^*)$, then obviously $\theta_i(\alpha^*(x))$ is not defined.

Case 2. $x \in \mathbb{N}_{a_i}$. Then $x = \Pi_{a_i}(i_1, \ldots, i_{a_i})$ for some natural i_1, \ldots, i_{a_i} and $\alpha^*(\varphi^*(x)) \cong \alpha^*(\Pi_1(\varphi_i(i_1, \ldots, i_{a_i})) \cong \alpha(\varphi_i(i_1, \ldots, i_{a_i})) \cong \theta_i(\alpha(i_1), \ldots, \alpha(i_{a_i}))$ $\cong \theta_i(\langle \alpha(i_1), \ldots, \alpha(i_{a_i}) \rangle) \cong \theta_i(\alpha^*(\Pi_{a_i}(i_1, \ldots, i_{a_i}))) \cong \theta_i(\alpha^*(x))$.

Lemma 2.10. For any $x \in \mathbb{N}$ the following conditional equalities hold:

$$\sigma_i^*(x) \cong F_j(\alpha^*(x)), \quad j=1,\ldots,l.$$

Proof. Analogously to Lemma 2.9.

So, we have that if we fix $\Pi' = \Pi$, L' = L and R' = R, then the conditions (i) – (v) of extended effective enumeration are fulfilled.

Conversly, let a partial structure $\mathfrak{A} = (B; \theta_1, \ldots, \theta_k; F_1, \ldots, F_l)$ be given and the structure $\mathfrak{A}^* = (B^*; \theta_1, \ldots, \theta_k; F_1, \ldots, F_l)$ admit an extended effective enumeration $(\alpha^*, \mathfrak{B}^*)$, where $\mathfrak{B}^* = (\mathbb{N}; \varphi_1, \ldots, \varphi_k; \sigma_1, \ldots, \sigma_l)$ is a partial structure with unary functions and predicates and α is a partial surjective mapping of \mathbb{N} onto B^* such that the conditions (i) – (v) hold and the recursive functions Π', L', R' which satisfy (v) are fixed.

We shall define an enumeration (α, \mathfrak{B}) of \mathfrak{A} . For this purpose for every positive natural number k we define the sets \mathbb{N}'_k , \mathbb{N}''_k as follows:

 $\mathbb{N}_k' = \{x \mid x \in \text{Dom}(\alpha^*) \& \alpha^*(x) \in B^k\}, \quad \mathbb{N}_k'' = \{x \mid x \in \text{Dom}(\alpha^*) \& \alpha^*(x) \notin B^k\}.$ Then

$$\alpha(x) \cong \begin{cases} \alpha^*(x), & \text{if } x \in \mathbb{N}_1', \\ \text{not defined,} & \text{otherwise.} \end{cases}$$

Lemma 2.11. Dom(α) is r.e.

In this case we define the sequence $\{\Pi'_k\}_{k\in\mathbb{N}\setminus\{0\}}$ by means of the following inductive definition:

- a) $\Pi'_1(i_1) = i_1;$
- b) $\Pi'_{k+1}(i_1,\ldots,i_k,i_{k+1}) = \Pi'(\Pi'_k(i_1,\ldots,i_k),i_{k+1}).$

Lemma 2.12. For every positive natural number k, if $i_1 \in \text{Dom}(\alpha) \& \ldots \& i_k \in \text{Dom}(\alpha)$, then $\Pi'_k(i_1,\ldots,i_k) \in \text{Dom}(\alpha^*) \& \alpha^*(\Pi'_k(i_1,\ldots,i_k)) \in B^k$ and

$$\langle \alpha(i_1), \ldots, \alpha(i_{a_i}) \rangle \cong \alpha^*(\Pi'_k(i_1, \ldots, i_k)).$$

Proof. By standard unduction on k.

Lemma 2.13. For every positive natural number k there exists a recursive set M_k such that $\mathbb{N}'_k \subseteq M_k$ and $\mathbb{N}''_k \subseteq \mathbb{N} \setminus M_k$.

Proof. By induction. If k = 1, then let M_1 be a recursive set such that $\alpha^{*-1}(B) \subseteq M_1$ and $\alpha^{*-1}(B^* \setminus B) \subseteq \mathbb{N} \setminus M_1$. Then $\mathbb{N}_1' \subseteq M_1$ and $\mathbb{N}_1'' \subseteq \mathbb{N} \setminus M_1$.

Let us assume that there exists a recursive set M_k such that $\mathbb{N}_k' \subseteq M_k$ and $\mathbb{N}_k'' \subseteq \mathbb{N} \setminus M_k$. Set $M_{k+1} = \{x \mid L'(x) \in M_k \& R'(x) \in M_1 \& x \neq 0 \& x \notin M_1 \}$.

If $x \in \mathbb{N}'_{k+1}$, then $x \in \text{Dom}(\alpha^*)$ and $\alpha^*(x) = \langle b_1, b_2 \rangle$, where $\alpha^*(L'(x)) = b_1 \in B^k$ and $\alpha^*(R'(x)) = b_2 \in B$. Therefore, $x \in M_{k+1}$.

Let $x \in \mathbb{N}_{k+1}''$. Then x = 0 or $x \in M_1$ or $x \notin M_1$.

If x = 0 or $x \in M_1$, then it is obvious that $x \notin M_{k+1}$.

If $x \notin M_1$, then $x \notin N_1$, since $\alpha^*(x) \cong \langle b_1, b_2 \rangle \cong \alpha^*(L'(x)), \alpha^*(R'(x)) \rangle$. Therefore, $b_1 \notin B^k$ or $b_2 \notin B$, i. e. $L'(x) \notin M_k$ or $R'(x) \notin M_1$. Again $x \notin M_{k+1}$ and Lemma 2.13 is proved.

Let us define the functions $\varphi_1, \ldots, \varphi_k, \sigma_1, \ldots, \sigma_l$ in the following way:

$$\varphi_i(x_1,\ldots,x_{a_i}) \cong \varphi_i^*(\Pi'_{a_i}(x_1,\ldots,x_{a_i})), \quad i=1,\ldots,k,$$

$$\sigma_j(x_1,\ldots,x_{b_j}) \cong \sigma_j^*(\Pi'_{b_j}(x_1,\ldots,x_{b_j})), \quad j=1,\ldots,l.$$

Lemma 2.14. $\varphi_1, \ldots, \varphi_k, \sigma_1, \ldots, \sigma_l$ are partial recursive functions.

Lemma 2.15. For all $i, 1 \leq i \leq k$, and for any natural numbers x_1, \ldots, x_{a_i} the following conditional equalities hold:

$$\alpha(\varphi_i(x_1,\ldots,x_{a_i})) \cong \theta_i(\alpha(x_1),\ldots,\alpha(x_{a_i})), \quad i=1,\ldots,k.$$

$$Proof. \qquad \alpha(\varphi_i(x_1,\ldots,x_{a_i})) \cong \alpha(\varphi_i^*(\Pi'_{a_i}(x_1,\ldots,x_{a_i})))$$

$$\alpha^*(\varphi_i^*(\Pi_{a_i}(x_1,\ldots,x_{a_i}))) \cong \theta_i^*(\alpha^*(\Pi'_{a_i}(x_1,\ldots,x_{a_i}))) \cong \theta_i(\langle \alpha(x_1),\ldots,\alpha(x_{a_i}) \rangle)$$

$$\cong \alpha^*(\varphi_i^*(\Pi_{a_i}(x_1,\ldots,x_{a_i}))) \cong \theta_i^*(\alpha^*(\Pi'_{a_i}(x_1,\ldots,x_{a_i}))) \cong \theta_i(\langle \alpha(x_1),\ldots,\alpha(x_{a_i})\rangle)$$
$$\cong \theta_i(\alpha(x_1),\ldots,\alpha(x_{a_i})), \quad i=1,\ldots,k.$$

Lemma 2.16. For all $j, 1 \leq j \leq l$, and for any natural numbers x_1, \ldots, x_{b_j} the following conditional equalities hold:

$$\sigma_j(x_1,\ldots,x_{b_j})\cong F_j(\alpha(x_1),\ldots,\alpha(x_{b_j})), \quad j=1,\ldots,l.$$

Proof. Analogously to Lemma 2.15.

Theorem 2.1 is proved.

Theorem 2.17. A partial structure $\mathfrak A$ with a denumerable domain admits an effective enumeration iff the family of the types of all elements of the structure $\mathfrak A^*$ has an universal r.e. set U which satisfies the next conditions:

- (i) The type of the element 0 is recursive set;
- (ii) If $L_1 = \bigcup \{ \mathbf{T}_{\mathfrak{A}^*}[s] \mid s \in B \}$ and $L_2 = \bigcup \{ \mathbf{T}_{\mathfrak{A}^*}[s] \mid s \in B^* \setminus B \}$, then L_1 and L_2 are recursively separable;
 - (iii) There exist such total recursive functions Π', L', R' that:
 - a) If $U_{x_1} = \mathbf{T}_{\mathfrak{A}^{\bullet}}[s_1]$ and $U_{x_2} = \mathbf{T}_{\mathfrak{A}^{\bullet}}[s_2]$, then $\mathbf{T}_{\mathfrak{A}^{\bullet}}[\langle s_1, s_2 \rangle] = U_{\Pi'(x_1, x_2)}$;
 - b) If $\mathbf{T}_{\mathfrak{A}^{\bullet}}[\langle s_1, s_2 \rangle] = U_x$, then $U_{L'(x)} = \mathbf{T}_{\mathfrak{A}^{\bullet}}[s_1]$ and $U_{R'(x)} = \mathbf{T}_{\mathfrak{A}^{\bullet}}[s_2]$.

Proof. Analogously to [8] suppose that the partial structure $\mathfrak A$ admits an effective enumeration $(\alpha, \mathfrak B)$. Then the partial structure $\mathfrak A^*$ admits an extended effective enumeration $(\alpha^*, \mathfrak B^*)$, where $\mathfrak B^* = (\mathbb N; \varphi_1^*, \dots, \varphi_k^*; \sigma_1^*, \dots, \sigma_l^*)$. According to [8] we can consider that α^* is totally defined over $\mathbb N$. A simple construction shows that there exists a primitive recursive in $\{\varphi_1^*, \dots, \varphi_k^*, \sigma_1^*, \dots, \sigma_l^*\}$ function Ψ such that for each functional termal formula $\mathbb N^v$ with code v

$$\Psi(v,x)\cong \Pi^v_{\mathfrak{A}^*}(\alpha^*(x))$$

for all x of \mathbb{N} . Consequently, Ψ is partially recursive. Then it is obvious that the set

 $U = \{(x, v) \mid \Psi(v, x) \cong 0 \& v \text{ is a code of a functional termal formula}\}$ is r.e. and universal for the family of the types of all elements of the structure \mathfrak{A}^* which satisfies the conditions (i) – (iii).

Suppose now that the types of all elements of the structure \mathfrak{A}^* are r.e. and that the family of all these types has an universal r.e. set U^1 which satisfies the conditions (i) – (iii). Let $U = \{(a, x) \mid U_a^1 \text{ is a type of some element of } B\}$. It is obvious that the set U is r.e. and satisfies the conditions (i) – (iii), as well. We may assume that for every x there exist infinitely many y such that $U_x = U_y$ [cf. 7, 8].

Set

$$\varphi_i^* = \lambda x.\Pi(i, x), \quad i = 1, \dots, k;$$

$$\Pi_0(x, y) = \Pi(0, \Pi(x, y));$$

$$\mathbb{N}_0 = \mathbb{N} \setminus (\operatorname{Ran}(\varphi_1^*) \cup \dots \cup \operatorname{Ran}(\varphi_n^*) \cup \Pi_0).$$

For any natural number x, let B_x be the set $\{s \mid s \in B \& \mathbf{T}_{\mathfrak{A}^*}[s] = U_x\}$ of all elements of B with type U_x and α^0 be an arbitrary surjective mapping of \mathbb{N}_0 onto B, satisfying the equalities $\alpha^0(\{y \mid U_x = U_y\}) = B_x$, $x \in \mathbb{N}$. Evidently, $\mathrm{Dom}(\alpha^0) = \mathbb{N}_0$ is r.e.

We define the partial mapping α^* of N onto B^* by the inductive clauses:

If $x \in \mathbb{N}_0$, then $\alpha^*(x) \cong \alpha^0(x)$;

If $x = \Pi(i, y)$, $1 \le i \le k$, $\alpha^*(y) \cong s$ and $\theta_i(s) \cong t$, then $\alpha^*(x) \cong t$;

If $z = \Pi(0, \Pi(x, y))$, $\alpha^*(x) \cong s_1$ and $\alpha(y)^* \cong s_2$, then $\alpha^*(z) \cong \langle s_1, s_2 \rangle$.

The proofs of the next simple lemmas are analogous of those in [7, 8].

Lemma 2.18. For every $x \in \mathbb{N}$ and $i, 1 \leq i \leq k$,

$$\alpha(\varphi_i^*(x)) \cong \alpha^*(\langle i, x \rangle) \cong \theta_i(\alpha^*(x)).$$

Let us denote by $\overline{\mathfrak{B}}$ the partial structure $(\mathbb{N}; \varphi_1^*, \ldots, \varphi_k^*)$.

Corollary 2.19. Let τ be a functional term and $y \in \mathbb{N}$. Then

$$\alpha^*(\tau_{\overline{\mathfrak{M}}}(y)) \cong \tau_{\mathfrak{M}^*}(\alpha^*(y)).$$

Lemma 2.20. There exists an effective way to define, for every x of \mathbb{N} , an element y of \mathbb{N}_0 and a functional term τ such that $x = \tau_{\overline{B}}(y)$.

Lemma 2.21. There exists an effective way to define, for every x of \mathbb{N} , an element y of \mathbb{N}_0 and a functional term τ such that $\alpha^*(x) \cong \tau_{\mathfrak{A}^*}(\alpha^*(y))$.

Lemma 2.22. $Dom(\alpha)^*$ is recursively enumerable.

Finally, let us define the partial predicates $\sigma_1^*, \ldots, \sigma_k^*$ on N using the conditional equalities

$$\sigma_j^*(x) \cong \left\{ egin{array}{ll} 0, & ext{if } F_j(lpha^*(x)) \cong 0, \\ 1, & ext{if } \neg F_j(lpha^*(x)) \cong 0, \\ ext{undefined}, & ext{otherwise}, \end{array}
ight.$$

 $j = 1, \ldots, l$. Analogously, it follows:

Lemma 2.23. The predicates $\sigma_1^*, \ldots, \sigma_l^*$ are partially recursive.

Thus, it is proven that $\langle \alpha^*, (\mathbb{N}; \varphi_1^*, \dots, \varphi_k^*; \sigma_1^*, \dots, \sigma_l^*) \rangle$ is an extended effective enumeration of the structure \mathfrak{A}^* .

It is easy to see that the next theorem is also valid.

Theorem 2.24. A partial structure $\mathfrak A$ with a denumerable domain admits an effective enumeration iff the family of the types of all elements of the structure $\mathfrak A$ has an universal r.e. set U such that there exist total recursive functions Π' , L', R' satisfying the conditions:

- *) If $W_x = \mathbf{T}_{\mathfrak{A}^{\bullet}}[\langle s_1, s_2 \rangle]$, then $W_{L'(x)} = \mathbf{T}_{\mathfrak{A}^{\bullet}}[s_1]$ and $W_{R'(x)} = \mathbf{T}_{\mathfrak{A}^{\bullet}}[s_2]$;
- **) If $W_{x_1} = \mathbf{T}_{\mathfrak{A}^{\bullet}}[s_1]$ and $W_{x_2} = \mathbf{T}_{\mathfrak{A}^{\bullet}}[s_2]$, then $\mathbf{T}_{\mathfrak{A}^{\bullet}}[\langle s_1, s_2 \rangle] = W_{\Pi'(x_1, x_2)}$.

Here we use W_e to denote the e-th recursively enumerable (r.e.) set.

REFERENCES

- Ershov, Y. L. Decision problems and constuctivizable models. Nauka, Moscow, 1980 (in Russian).
- Soskova, A. A., I. N. Soskov. Effective enumerations of abstract structures. In: Heyting'88: Mathematical Logic (ed. P. Petkov), Plenum Press, New York — London, 1989.
- Jockusch, C. G., Jr. and A. Shlapentokh. Weak presentations of computable fields. J. Symbolic Logic, 60, 1, 1995, 199-208.
- Soskov, I. N. Definability via enumerations. J. Symbolic Logic, 54, 2, 1989.
- Soskov, I. N. Computability by means of effective definable schemes and definability via enumerations. Arch. for Math. Log., 29, 1990, 187-200.
- Chisholm, J. The complexity of intrincically r.e. subset of existentially decidable models. J. Symbolic Logic, 55, 3, 1990, 1213-1232.
- 7. Ditchev, A. V. On the effective enumerations of partial structures. Ann. de l'Université de Sofia, Fac. de Math. et Inf., 83, 1, 1989, 29-37.
- 8. Ditchev, A. V. On the effective enumerations of structures (submited for publication).
- 9. Ditchev, A. V. Examples of structures which do not admit recursive presentations. Ann. de l'Université de Sofia, Fac. de Math. et Inf., 85, 1, 1991, 3-11.

Received January 19, 1999

Faculty of Mathematics and Informatics "St. Kliment Ohridski" University of Sofia 5 James Bourchier Blvd. BG-1164 Sofia, Bulgaria

E-mail: ditchev@fmi.uni-sofia.bg