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1. INTRODUCTION

In this paper we study two instances of the main problem in coding theory: the
problem of determining the exact value of nq(k, d) defined as the minimal length of
a k-dimensional linear code of minimum distance d over the field with q elements.
This problem has been studied intensively in the past 30 years and has been solved
completely for some small fields Fq, and small dimensions k. The problem has
a clear geometric relevance since every linear code of full length is known to be
equivalent to an arc in the appropriate finite projective space and optimal codes
correspond in the rule to nice geometric configurations.

A natural lower bound on nq(k, d) is the Griesmer bound [5]:

nq(k, d) ≥ gq(k, d)
def
=

k−1∑
i=1

⌈
d

qi

⌉
.
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Linear codes meeting this bound are called Griesmer codes. Arcs associated with
Griesmer codes are called Griesmer arcs. Given an integer k and a prime power q,
Griesmer codes are known to exist for all sufficiently large values of d. A standard
approach to the problem of finding the exact value of nq(k, d) is to solve the problem
for fixed k and q for all d. In this setting the main problem in coding theory is a
finite one. This paper deals with linear codes over the field with four elements. The
exact value of n4(k, d) was found for k ≤ 4 for all d [4,12]. For the next dimension
k = 5 there exist 104 values of d for which n4(5, d) is unknown [12].

In this paper, we prove the nonexistence of the hypothetical quaternary Gries-
mer codes of dimension k = 5 with d = 295, 296, a fact which was hitherto un-
known. The problem is studied purely geometrically due to the equivalence of
linear [n, k, d]q-codes and arcs with parameters (n, n− d) in PG(k− 1, q) [3,8,9,11].
Thus the existence of the codes in question that have parameters [395, 5, 295]4
and [396, 5, 296]4 is equivalent to the existence of (395, 100)- and (396, 100)-arcs in
PG(4, 4). The nonexistence proof relies on the classification of arcs with parameters
(100, 26) in PG(3, 4). These arcs are related to caps in PG(3, 4) and can be ob-
tained trivially from (102, 26)-arcs by deleting two points. The latter are obtained
as the sum of the maximal 17-cap in PG(3, 4) and the whole space. Remarkably,
there exists a (100, 26)-arc which is not extendable to the unique (102, 26)-arc.

This paper is organized as follows. In section 2 we present some basic facts
on arcs in the geometries PG(r, q). We explain briefly the connections between
linear codes over finite fields and arcs in finite projective geometries. Furthermore,
we state without proof some results that are used in the paper. These include
the so-called Hill–Lizak’s Extension Theorem and H. N. Ward’s Divisibility Theo-
rem. Both theorems are formulated in their geometric form. Section 3 contains the
geometric characterization of the arcs with parameters (100, 26) in PG(3, 4). In sec-
tion 4, we prove the nonexistence of arcs with parameters (395, 100), and (396, 100)
in PG(4, 4), which settles the problem of finding the exact value of n4(5, d) for
d = 295, 296.

2. PRELIMINARIES

A multiset in PG(k − 1, q) is a mapping K : P → N0, where P denotes the
pointset of PG(k − 1, q). The integer K(P) =

∑
P∈P K(P ) is called the cardinality

of the multiset K. For a subset Q of P, we set K(Q) =
∑
P∈QK(P ). The integer

K(Q) is called the multiplicity of the subset Q. A point of multiplicity i is called
an i-point; i-lines, i-planes, i-solids etc. are defined in a similar way. Given a set
of points S ⊆ P, we define the characteristic function χS of S by

χS(P ) =

{
1 if P ∈ S;
0 if P 6∈ S.

A multiset K in PG(k − 1, q) is called an (n,w, k − 1, q)-arc, or an (n,w)-arc for
short, if
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(a) K(P) = n;

(b) for each hyperplane H in PG(k − 1, q), K(H) ≤ w, and

(c) there is a hyperplane H with K(H) = w.

In a similar way, we define an (n,w; k−1, q)-blocking set (or just (n,w)-blocking
set if the geometry is clear from the context) as a multiset K in PG(k − 1, q)
satisfying

(d) K(P) = n;

(e) for each hyperplane H in PG(k − 1, q), K(H) ≥ w, and

(f) there is a hyperplane H with K(H) = w.

Given a (n,w; k − 1, q)-arc K, we denote by γi(K) the maximal multiplicity of an
i-dimensional flat in PG(k− 1, q), i.e. γi(K) = maxδ K(δ), i = 0, . . . , k− 1, where δ
runs over all i-dimensional flats in PG(k − 1, q). If K is clear from the context we
shall write just γi. In what follows, we repeatedly use the following lemma which
is proved by straightforward counting.

Lemma 1. Let K be an (n,w; k−1, q)-arc, and let Π be an (s−1)-dimensional
flat in PG(k − 1, q), 2 ≤ s < k, with K(Π) = u. Then, for any (s− 2)-dimensional
flat ∆ contained in Π, we have

K(∆) ≤ γs−1(K)− n− u
qk−s + . . .+ q

.

For an (n,w; k − 1, q) arc K, denote by ai the number of hyperplanes H in
PG(k− 1, q) with K(H) = i, i ≥ 0. Let further λj be the number of points P from
P with K(P ) = j. The sequence (a0, a1, . . .) is called the spectrum of K. Simple
counting arguments yield the following identities, which are equivalent to the first
three MacWilliams identities for linear codes:

n−d∑
i=0

ai =
qk − 1

q − 1
, (2.1)

n−d∑
i=1

iai = n · q
k−1 − 1

q − 1
, (2.2)

n−d∑
i=2

(
i

2

)
ai =

(
n

2

)
qk−2 − 1

q − 1
+ qk−2 ·

γ0∑
i=2

(
i

2

)
λi. (2.3)

Set w = n−d and vi = (qi−1)/(q−1). The following identity is easily obtained
from (2.1)–(2.3):

w∑
i=0

(
w − i

2

)
ai =

(
w

2

)
vk − n(w − 1)vk−1 +

(
n

2

)
vk−2 + qk−2 ·

γ0∑
i=2

(
i

2

)
λi. (2.4)
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Note that the sum on the left-hand side can be written as
∑
H

(
w−K(H)

2

)
, where

H runs over all hyperplanes of PG(k − 1, q). Let us fix a hyperplane H0. Given
a subspace δ of codimension 2 contained in H0, denote by H1, H2, . . . ,Hq the
remaining hyperplanes through δ. Set

ηi = max
δ : K(δ)=i

q∑
j=1

(
w −K(Hj)

2

)
. (2.5)

Here the maximum is taken over all hyperlines δ of multiplicity i contained in H0.
Assume the spectrum (bi) of the restriction of K to H0, is known. We have∑

H

(
w −K(H)

2

)
≤
∑
j

bjηj +

(
w −K(H0)

2

)
,

which by (2.4) implies

∑
j

bjηj +

(
w −K(H0)

2

)
≥

(
w

2

)
vk − n(w − 1)vk−1 +

(
n

2

)
vk−2 + qk−2 ·

γ0∑
i=2

(
i

2

)
λi. (2.6)

Clearly, (2.6) is a necessary condition for the existence of an (n,w)-arc in
PG(k − 1, q). It can also be used to rule out the existence of hyperplanes H for
which K|H has a given spectrum.

The following argument will be used throughout the paper. Let K be an
(n, n − d; k − 1, q)-arc, i.e. an arc associated with an [n, k, d]q-code. Fix an i-
dimensional flat δ in PG(k− 1, q), with K(δ) = t. Let further π be a j-dimensional
flat in PG(k − 1, q) of complementary dimension, i.e. i+ j = k − 2 and δ ∩ π = ∅.
Define the projection ϕ = ϕδ,π from δ onto π by

ϕ :

{
P \ δ → π
Q → π ∩ 〈δ,Q〉. (2.7)

Here P is the set of points of PG(k−1, q). Note that ϕ maps (i+s)-flats containing
δ into (s− 1)-flats in π. Given a set of points F ⊂ π, define the induced arc Kϕ by

Kϕ(F) =
∑

ϕδ,π(P )∈F

K(P ).

If F is a k′-dimensional flat in π then Kϕ(F) ≤ γk′+i+1 − t.
In this paper, we consider arcs in PG(3, 4) or PG(4, 4) and always take δ to be

a point (in the three-dimensional case) or a line (in the four-dimensional case); in
both cases π will be a plane disjoint from δ. Every line L in π is then the image
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of a hyperplane (a plane or a solid) containing δ. If P0, . . . , Pq are the points on L
we call the (q + 1)-tuple (Kϕ(P0), . . . ,Kϕ(Pq)) the type of L.

It was mentioned already, that the existence of linear [n, k, d]q codes of full
length is equivalent to that of (n, n − d; k − 1, q)-arcs. Two linear codes with the
same parameters are semilinearly isomorphic if and only if the corresponding arcs
are projectively equivalent. H.N. Ward proved in [13] a remarkable theorem on
the divisibility of codes meeting the Griesmer bound. Below we give Ward’s result
restated for arcs in PG(k − 1, q) (cf. [9]).

Theorem 1. Let K be a Griesmer (n,w)-arc in PG(k − 1, p), p prime, with
w ≡ n mod pe, e ≥ 1. Then K(H) ≡ n mod pe for every hyperplane H.

For codes over F4 (resp. arcs in geometries over F4) we have the following
weaker version of this result [13].

Theorem 2. Let K be a Griesmer (n,w)-arc in PG(k− 1, 4) with w ≡ n mod
2e. Then K(H) ≡ n mod 2e−1 for every hyperplane H.

An (n,w)-arc K in PG(k−1, q) is called extendable if there exists an (n+1, w)-
arc K′ in PG(k− 1, q) with K′(x) ≥ K(x) for every point of PG(k− 1, q). The next
extension result about arcs stated below follows directly from Hill-Lizak’s extension
theorem [6,7]:

Theorem 3. Let K be an (n,w; k − 1, q)-arc with gcd(n− w, q) = 1. Assume
that the multiplicities of all hyperplanes are congruent to n or w modulo q. Then
K can be extended to an (n+ 1, w)-arc.

The following theorem from [10] follows from a result by Beutelspacher [1] and
can be viewed as a generalization of Hill-Lizak’s extension theorem.

Theorem 4. Let K be a (n,w)-arc in PG(k − 1, q), q = ps, with spectrum
(ai)i≥0. If w 6≡ n mod p and∑

i 6≡w mod q

ai ≤ qk−2 + qk−3 + . . .+ 1 + qk−3 · r(q)

where q+ r(q) + 1 is the minimal size of a non-trivial blocking set of PG(2, q), then
there exists an (n+ 1, w)-arc.

As a corollary we can derive the following useful result [10]:

Corollary 1. Let K be a nonextendable (n,w)-arc in PG(k − 1, q), q = ps,
with w ≡ n + 1 (mod q) and with spectrum (ai)i≥0. Let θ denote the maximal
number of hyperplanes of multiplicity 6≡ n+ 1 (mod q) incident with any subspace
of codimension 2 of H, where H is a hyperplane of multiplicity K(H) ≡ w (mod q).
Then

∑
i 6≡n,n+1 (mod q) ai > qk−3 · r(q)/(θ − 1), where r(q) is as in Theorem 4. In

particular, we have
∑
i 6≡n,n+1 (mod q) ai > qk−3 · r(q)/(q − 1).

Ann. Sofia Univ., Fac. Math and Inf., 106, 2019, 11–24. 15



3. CLASSIFICATION OF THE (100, 26)-ARCS IN PG(3, 4)

In this section we classify the arcs with parameters (100, 26) in PG(3, 4). It
is known that a (102, 26)-arc in PG(3, 4) is the sum of a 17-cap plus the whole
space, and hence is unique. By Hill-Lizak’s extension theorem every (101, 26)-arc
is extendable to a (102, 26)-arc. One obvious way to construct (100, 26)-arcs in
PG(3, 4) is to delete a point from a (101, 26)-arc, or equivalently, to delete two
points from a (102, 26)-arc. It turns out however that there exist (100, 26)-arcs
that cannot be obtained in this way.

Let K be a (100, 26)-arc. By Lemma 1

γ0(K) = 2, γ1(K) = 7, γ2(K) = 26.

From now on we assume that K is a non-extendable (100, 26)-arc in PG(3, 4). The
restriction of K to a maximal hyperplane is a (26, 7)-arc. The characterization of
such arcs is given by the following lemma.

Lemma 2. A (26, 7)-arc in PG(2, 4) is one of the following:

(1) two copies of the plane minus three non-concurrent lines minus a point (type
(A));

(2) the sum of the plane plus a hyperoval minus a point (type (B));

(3) two 7-lines through a common 0-point; all points outside these two 7-lines are
1-points (type (C)).

The arcs of the first two types are extendable while an arc of the third type
is not. This result is easily obtained from the known results on arcs and blocking
sets in PG(2, 4) and we omit the proof. Below we present the spectra of these arcs,
as well as the possible line types after a projection from a 0-point. For the second
spectrum of type (B) there are no 0-points.

Type a7 a6 a5 a4 a3 a2 λ2 λ1 λ0 Line types
(A) 14 4 0 0 2 1 9 8 4 77732

77633
66662

13 5 0 0 3 0 8 10 3 77633
(B) 12 3 4 2 0 0 6 14 1 66644

10 5 6 0 0 0 5 16 0 -
(C) 11 6 1 3 0 0 6 14 1 77444

It is important to note that a (26, 7)-arc does not have 0- or 1-lines, as well as
5-lines with a 0-point. It is also worth noting that a (26, 7)-arc cannot contain a 3-
and a 4-line simultaneously.
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Lemma 3. Let K be a (25, 7)-arc in PG(2, 4) having a 6-line L with three 2-
and two 0-points. Then K has a also a 7-line incident with a 0-point.

Proof. Denote by λi, i = 0, 1, 2 the number of i-points in K. Obviously
λ2 − λ0 = 4, and since λ0 ≥ 2 and λ2 ≤ 9, we are left with four cases: λ2 = 6 + i,
λ0 = 2 + i, where i = 0, 1, 2, 3.

Assume for a contradiction that there is no 7-line with three 2-points and one
1-point. We consider the case λ0 = 2. Let the three 2-points outside L be collinear.
Then the line defined by them meets the 6-line L in a 0-point. This line should have
another 0-point, because of our assumption, which gives λ0 ≥ 3, a contradiction.
If the three 2-points outside L form a triangle, at least one of the lines defined by
the vertices of this triangle meets L in a 2-point and hence there must be another
0-point, again a contradiction.

The cases λ0 = 3, 4, 5 are dealt with in a similar way. �

Lemma 4. Let K be a (100, 26)-arc in PG(3, 4). Then for every plane π in
PG(3, 4) K(π) ≥ 12.

Proof. Let us note that by Lemma 1 K(π) 6= 7, 10, 11, 23. Without loss of gen-
erality we consider the case when K is a non-extendable arc. If K is extendable the
possible plane multiplicities are 26, 25, 24, 22, 21, 20, and the lemma holds trivially.

Planes π of multiplicity ≤ 5 are ruled out by the nonexistence of 0- or 1-lines
in (26, 7)-arcs. It is easily seen that for planes of multiplicity at most 5, there is
always a 0-point P in π which is incident only with 0- or 1-lines. Since P lies in at
least one 26-plane π′ (K was assumed to be non-extendable) the line π ∩ π′ is a 0-
or 1-line, a contradiction.

Assume there exists a 6-plane π0. Consider a 2-line L in π0. The line L is
incident with at least two 26-planes, π1 and π2 say. Clearly π1 and π2 are of type
(A). There exists a 0-point on L such that after a projection from that point the
images of π1 and π2 are (7, 7, 7, 3, 2). Now in the projection plane there is a line of
type (3, 3, 2/0, x, y) for some integers x, y. Now x, y ≤ 4 since a 26-plane does not
have a 5-line with a 0-point. This is a contradiction since K cannot have a 6-plane
and a plane of multiplicity < 14 simultaneously.

Assume there exists a plane π0 of multiplicity 8. Consider a projection from
a 0-point in a 3-line L in π0. The images of the other four planes through L are
of type (7, 7, 7 − ε, 3, 2 + ε) with ε ∈ {0, 1}. Now the projection plane necessarily
contains a line of type (7, 7, 6, 6, 0) which is an impossible type by Lemma 2. Planes
of multiplicity 9 are ruled out similarly. In this case, we can even select the point
on the 9-plane in such way that its image is of type (3, 3, 3, 0, 0), which simplifies
the proof. �

Lemma 5. Let K be a (100, 26)-arc in PG(3, 4). Then there is no plane π in
PG(3, 4) with 12 ≤ K(π) ≤ 15.
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Proof. First, we shall rule out planes of multiplicity 15. Assume π0 is a plane
with K = 15. The restriction of K to π0 is a plane minus a line L and minus a
point Q which lies off L. Assume there is a 0-point P outside π0. A 26-plane π1
through P (it exists since K is not extendable) has at least two 0-points (P and
one on π0). Hence this plane contains an arc of type (A) and therefore contains
also Q. Now consider a 7-line L′ in π1 through P . It is incident with at least two
further 26-planes that have at least two and hence at least three 0-points. On the
other hand they meet π0 in a 4-line which contradicts Lemma 4 (a (26, 7)-arc of
type (A) does not have a 4-line). We have proved so far that there are no 0-points
outside π0. Now Q should be incident with a 26-plane that meets π0 in a 3-line
and hence has two 0-points, which is impossible.

In the same way we can rule out the existence of 14-planes (the complement
of a line and two points or the complement of a Baer subplane), and of 16-planes
in which the 0-points are collinear.

Now we are going to prove that planes of multiplicity 13 do not exist. The
proof of the nonexistence of 12-planes is similar and more simple.

Assume there exists a 13-plane π0. Fix a 4-line L in π0 and denote the other
four planes through L by πi, i = 1, . . . , 4. Without loss of generality π1, π2, π3
are 26-planes and π4 is a 25-plane. Consider a projection from P which we de-
note by ϕ and set Li = ϕ(πi). Let us note that L4 does not contain a 7-point.
This follows from the fact that this point must be incident with three 26-lines and
the types of L1, L2, L3 are (7, 7, 4, 4, 4) or (6, 6, 6, 4, 4) and L0 is forced to be of
type (4, 4, 4, 4, 0), a contradiction. Hence the type of L4 is one of (4, 6, 6, 6, 3),
(4, 6, 6, 5, 4) or (4, 6, 5, 5, 5).

Now a 13-plane is the complement of a (8, 1)-blocking set, and hence one of
the following: (a) the complement of a line and three points or (b) the complement
of a Baer subplane and a point.

In case (a) there exists a point P such that the projection of π0 from that
point is of type (4, 3, 3, 3, 0). Now none of the lines L1, L2, L3 is of type (7, 7, 4, 4, 4)
since a 26-line through a 7-point should have two points of multiplicity at most 3.
Consequently, the line L4 should have two 3-points which is impossible. Therefore
L1, L2, L3 are of type (6, 6, 6, 4, 4). Now with all three possibilities for L4 we get a
contradiction. For instance, if L4 is of type (4, 6, 6, 6, 3), the set of points

F = {X ∈ L1 ∪L2 ∪L3 ∪L4 | Kϕ(X) = 6} ∪ {Y ∈ L1 ∪L2 ∪L3 ∪L4 | Kϕ(Y ) = 3}

must be a (15, 4)-arc and there is a line of type (4, 4, 4, 3, 0). But we have already
ruled out the existence of 15-planes. The other two possibilities for L4 are dealt
with in a similar fashion.

(b) As in the nonexistence proof for 15-planes we can show that there are
no 0-points outside π0. Now denote by P the extra 0-point on π0 which is not
from the removed Baer subplane. The lines in π0 through P have multiplicities
3,3,3,3,1. hence a 26-plane through P (which necessarily exists) has two 0-points,
a contradiction. �
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Lemma 6. There exists a unique (100, 26)-arc in PG(3, 4) with the following
property: PG(3, 4) has a 24-plane with a 7-line consisting of three 2-points, one
1-point, and one 0-point.

Proof. Denote by π0 the 24-plane from the condition of the lemma. Let L be
a 7-line in π0 and let P be the unique 0-point on L. The remaining four planes
through L, denoted by π1, . . . , π4, are 26-planes. We consider a projection ϕ from
the point P . Set Q = ϕ(L), and Li = ϕ(πi), i = 0, . . . , 4. Clearly, K|πi i = 1, . . . , 4,
are of type (A) or (C) (cf. Lemma 4). Hence the possible types of the lines
L1, . . . , L4 are (7, 7, 7 − ε, 3, 2 + ε), ε = 0 or 1, or (7, 7, 4, 4, 4) . Now we have the
following possibilities for the four 26-planes through L:

(i) AAAA, (ii) AAAC, (iii) AACC, (iv) ACCC, (v) CCCC.

(i) The lines L1, . . . , L4 are all of type (7, 7, 7−ε, 3, 2+ε). Assume the pointset
X = {X | Kϕ(X) ≥ 6} in the projection plane has four collinear points and denote
by M the line incident with them. Let Z be the fifth point on M . It has multiplicity
at most 2. Now every line through Z, different from L0 or M has at least two points
from X , which is impossible. Hence X is a (9, 3)-arc. Moreover, there is no external
line to X since it would be of multiplicity ≤ 15. Now for every point R 6= Q on L0

we have Kϕ(R) ≤ 4. This implies Kϕ(L0) ≤ 7 + 4 · 4 = 23 < 24, a contradiction.

(ii) Let L4 be the line of type (7, 7, 4, 4, 4). In this case there exists a 26-line
through a 7-point on L1 (different from P ) which is of type (7, 4, ∗, ∗, ∗) and hence
is forced to be of type (7, 7, 4, 4, 4). This is clearly impossible since only L0 and L4

can have points of multiplicity 4.

(iii) The proof is similar to that of (ii).

(iv) Let L1 be of type (7, 7, 7 − ε, 3, 2 + ε), and let L2, L3, L4 be of type
(7, 7, 4, 4, 4). Now L0 is forced to be of type (7, 5, 4, 4, 4). Two of the 7-points on L1

plus the 7-points on L2, L3, and L4 form an oval which is extendable to a hyperoval
by adding a point on L0. Now through the point of multiplicity 7 − ε on L1 we
have a secant to the hyperoval (different from L1) which is of type (7, 7, 7− ε, 4, 4),
which is impossible.

(v) The pointset {X | Kϕ(P ) = 7} is an oval. Denote the nucleus of the oval
by N . Clearly, Kϕ(N) ≥ 5 since there is a line of type (7,Kϕ(N), 4, 4, 4). If L0 is
of type (7,Kϕ(N), x1, x2, x3) then 2 ≤ xi ≤ 4. Hence the structure of K can be
represented as

K = F − B.

Here F is the sum of the whole space plus a cone with an hyperoval as a base
curve minus twice the vertex of the cone P ; B is a set of 8 points blocking once
every plane that does not contain P . Clearly B ∪ {P} is a (9, 1)-blocking set with
a 4-line. �

Lemma 7. There exists no (100, 26)-arc in PG(3, 4) with the following prop-
erty: every 7-line with a 0-point is contained in two 25-planes.
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Proof. With L and P as in the previous theorem, let π0, π1, and π2 be the
26-planes and π3, π4 – the 25-planes through L. We have the following possibilities
for the three 26-planes through L:

(i) AAA, (ii) AAC, (iii) ACC, (iv) CCC.

In all cases we consider a projection ϕ from P . We set Li := ϕ(πi), Q = ϕ(L).

(i) Here we shall deal with the case when L0, L1, L2 are all of type (7, 7, 7, 3, 2).
The case when some (or all) of these lines are of type (7, 7, 6, 3, 3) is ruled out in
the same way. Assume three of the 7-points different from Q are collinear. Then
the line defined by them meets one of L3 or L4 (L3 say) in a point of multiplicity
at most 2. Hence there is a line through this point which is of type (7, 3, 3,≤ 2, x)
or (3, 3, 3,≤ 2, x). In the first case we get a line of multiplicity at most 22, a
contradiction. In the second we get x ≤ 4, which gives a line of multiplicity at
most 15 and is again impossible.

Now the six points different from Q on L0, L1, L2 that are of multiplicity 7
form a hyperoval. Through the 2-point on L0, there exist two external lines to the
hyperoval and one of them has to be of type (2, 2, 3, ∗, ∗) (or (2, 2, 2, ∗, ∗)). Now
it is an easy check that this line should be of multiplicity less than 16, which is
impossible.

(ii) Let L0 and L1 be of type (7, 7, 7− ε, 3, 2 + ε), ε ∈ {0, 1}, and let L2 be of
type (7, 7, 4, 4, 4). First observe that L3 or L4 do not have a point of multiplicity
7. In such case there is a line of type (7, 4, 3/2, 3/2, ∗), which is impossible since a
25- and a 24-plane do not meet in a 7-line. Assume one of L0 and L1, L0 say, is
of type (7, 7, 7, 3, 2). Now through the 2-point on L0 there exist two lines of type
(2, 3, 4, 4, 4) or (2, 2, 4, 4, 4), and hence each of L3, L4 has two points of multiplicity
4. Since type (7, 5, 5, 4, 4) is impossible for L3 or L4 (by the nonexistence of 26-
planes with a 5-line which contains a 0-point), both lines are of type (7, 6, 4, 4, 4).
This implies that L1 is also of type (7, 7, 7, 3, 2) and the set

{X | Kϕ(X) = 7, X 6= P} ∪ {Y | Y ∈ L3,Kϕ(Y ) = 6}

is not a hyperoval (since it has tangents). Hence there is a line of type (7, 7, 7, 4, 4)
or (7, 7, 6, 4, 2). The former is clearly impossible and the latter is ruled out by
Lemma 2.

Now we are left with the case where the lines L0 and L1 are both of type
(7, 7, 6, 3, 3). The three 7-points different from P on L0, L1, L2 are obviously not
collinear. Now there exists a 26-line of type (7, 4, 6/3, ∗, ∗) which is again ruled out
by Lemma 2.

(iii) The proof is similar to that of (ii).

(iv) In this case the lines L0, L1, L2 are all of type (7, 7, 4, 4, 4) and the three
7-points different from Q are not collinear. Then L3 and L4 have three points of
multiplicity at most 4, whence they are of type (7, 6, 4, 4, 4). Now {X | K ≥ 6} is
a hyperoval. The arc K can be represented as K = F − B, where F and B are as
in Lemma 6(v). Again B ∪ {P} is a (9, 1)-blocking set with two 3-lines meeting in
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a point and four coplanar points in a general position. A blocking set with this
structure does not exist. �

Summing up the results from Lemma 6 and Lemma 7 we get the following
theorem.

Theorem 5. Let K be a (100, 26)-arc in PG(3, 4). Then K is one of the
following:

(1) the sum of a cap and the whole space minus two points;

(2) the arc from the cone construction (case (v) in Lemma 6).

4. THE NONEXISTENCE OF (395, 100)- AND (396, 100)-ARCS IN PG(4, 4)

In this section we prove the nonexistence of arcs with parameters (395, 100) and
(396, 100) in PG(4, 4). Equivalently, there exist no [395, 5, 295]4- and [396, 5, 296]4-
codes. This resolves two open cases in Maruta’s tables for optimal linear codes
with k = 5, q = 4, namely n4(5, 295) = 396 and n4(5, 296) = 397.

As already noted, we will tackle the problem geometrically and will prove the
nonexistence of arcs in PG(4, 4) with parameters (395, 100) and (396, 100). The
proof is based on the knowledge of the structure of the maximal planes which was
completed in the previous section.

Theorem 6. There exist no (396, 100)-arcs in PG(4, 4).

Proof. Assume that K is a (396, 100)-arc in PG(4, 4). From the geomet-
ric version of Ward’s divisibility theorem, as well as by easy counting we have
that the admissible hyperplane multiplicities with respect to K are the following:
100, 96, 92, 86, 84, 82, 80, 78, and 76. Smaller hyperplanes are impossible since a
(100, 26)-arc in PG(3, 4) does not have planes of multiplicity less than 20.

Since the number of 2-points in K is at least 55 and the maximal size of a cap
in PG(4, 4) is 41 [2], there exist three collinear 2-points. A line incident with three
2-points is either a 6- or a 7-line.

First assume there is a 7-line L with three 2-points and consider a projection
ϕ from L. This line is necessarily contained in a 26-plane, π say, and hence in a
100-solid. The five solids through π, denoted by ∆i, i = 0, . . . , 4, are 100-solids of
type (2). Hence Kϕ has five 17- and sixteen 19-points. Moreover, the 17-points
should form a blocking set and hence are collinear. Therefore there is a 92-solid
through L.

Now consider another projection, denoted by ψ from the 0-point P of L. The
image of a 100-solid has five 7-points, one 5-point and fifteen 4-points with the 7-
and 5-points forming a hyperoval. Clearly, Kψ has seventeen 7-points that form a
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cap. Each 7-point is incident with a unique tangent plane to the cap. This plane is
forced to contain all the 5-points (since it is the image of the 92-solid above). This
observation is true for every 7-point, which gives a contradiction.

Now consider a 6-line L consisting of three 2- and two 0-points, and a projection
ϕ from L. Since a 100-solid does not have such a line, we have that L is contained
in solids of multiplicity at most 96. Since every point is contained in five solids
through L, counting the multiplicity of K − χL we get

390 = |K − χL| ≤
21 · 90

5
= 378,

a contradiction. �

Now we are going to prove the nonexistence of (395, 100)-arcs in PG(4, 4)
by demonstrating that if such an arc exists it is extendable to the nonexisting
(396, 100)-arc.

Theorem 7. There exist no (395, 100)-arcs in PG(4, 4).

Proof. Assume K is a (395, 100)-arc in PG(4, 4). As in the proof of theorem 6,
there exist three collinear 2-points. We consider two cases: (a) the line L defined
by these points is a 7-line, and (b) the line L defined by these points is a 6-line.

(a) The line L is necessarily contained in a 100-solid ∆0, which is forced to
be nonextedable. Since a (100, 26)-arc in PG(3, 4) has just planes of multiplicity
26, 24, 22, and 20, the possible multiplicities for solids with respect to K are:
100, 99, 92, 91, 86, . . . , 83, and 78, . . . , 75.

First we rule out the existence of 78- and 77-solids. By easy counting, solids of
this multiplicity have to be projective. Hence such solids are either the complement
of a line and two (resp. three points, or the complement of a Baer subplane (resp.
Baer subplane and a point). Denote such a solid by ∆1. Note that ∆1 must meet
∆0 in a 20-plane since the latter has no planes of smaller multiplicity. Consider
a projection ϕ from a 4-line K in the plane ∆0 ∩ ∆1. Now ϕ(∆0) is of type
(22, 22, 20, 16, 16). The possible types of the line ϕ(∆1) are the following:

if ∆1 is a 77-plane: (16, 16, 15, 15, 11), (16, 16, 16, 14, 11), (16, 16, 16, 15, 10),
(16, 16, 16, 16, 9);

if ∆1 is a 78-plane: (16, 16, 16, 14, 12), (16, 16, 16, 15, 11), (16, 16, 16, 16, 10).

We shall deal with the case when ∆1 is a 78-solid (the case K(∆1) = 77 is
treated analogously). The other three solids ∆i, i = 2, 3, 4, through ∆0 ∩ ∆1 are
forced to be of multiplicity 99. Since a 26-plane in a 99-solid is contained in four
100-solids the image ϕ(∆i), i = 2, 3, 4, does not have a 22-point. Hence the lines
ϕ(∆i), i = 2, 3, 4, are of type (20, 20, 20, 19, 16). A 22-point in the projection plane
is incident with four 96-lines (images of 100-solids) and one 95-line (the image of
99-solid). Therefore the 95-lines through each 22-point contain the 19-points on
the lines ϕ(∆i), i = 2, 3, 4. This is obviously impossible.
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Next we rule out the existence of 86-solids. A 22-plane in a 100-solid has one
2-point and twenty 1-points. Hence a 86-solid has one 2-point and eighty-four 1-
points. Such a solid has just 21- and 22-planes and therefore the arc K has no
further solids of multiplicity 85 and 86. This implies that K is extendable to the
nonexistent (396, 100)-arc by Corollary 1.

Finally, an 85-solid ∆1 must have a 2-point, otherwise all points are 1-points
and all planes are 21-planes, which is impossible. If ∆1 is an 85-solid then every
6-line is incident with one 21-plane, and four 22-planes; consequently, a 6-line has
exactly one 2-point. This implies that ∆1 consist either of one 2-point, one 0-point
and all the rest 1-points, or of two 2-points, two 0-points (all these collinear) and
all the rest 1-points. Now this is the only 85-solid since two such solids meet in
a plane of multiplicity at most 18. Again K is extendable by Corollary 1 and we
arrive at a contradiction.

(b) Now we assume that every three collinear 2-points determine a 6-line.
Note that every 100-solid is an extendable (100, 26)-arc and consequently 26-planes
cannot have three collinear 2-points. Consider such a 6-line, L say. Note that L is
not contained in a 100-solid. Assume that L is contained in a 99-solid ∆. There
exists a 25-plane π with L ⊂ π ⊂ ∆. Denote by P,Q the two 0-points on L. If
there exists a 7-line in π through P then counting the multiplicities of the planes
through this line we get

99 ≤ K(∆) ≤ 5 · 25− 4 · 7 = 97,

a contradiction. This implies that K|π is extendable to a (26, 7)-arc by turning P
into 1-point. But this implies that Q is incident with a 7-line, again a contradiction.

We have proved that the multiplicities of the solids through L do not exceed
97. Consider a projection ϕ from L. We have |Kϕ| = 389 and by the above
argument Kϕ(M) ≤ 91 for every line M in the projection plane. Now counting the
multiplicities of all lines in the plane of projection, we get

389 = |Kϕ| ≤ 21 · 91

5
=

1911

5
< 383,

a contradiction. �

Finally, we state Theorems 6 and 7 in coding-theoretic terms.

Corollary 2. There exist no linear codes with parameters [395, 5, 295]4, and
[396, 5, 296]4. Consequently, n4(5, 295) = 396, and n4(5, 296) = 397.
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