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1. INTRODUCTION

In the 40’s of the last century, while studying the zeros of Legendre polynomials
  (!), P. Turán discovered the inequality

 2
 (!)−   −1(!)  +1(!) ≥ 0, −1 ≤ ! ≤ 1, (1.1)

with equality only for ! = ±1. Since the left-hand side of (1.1) is representable in
determinant form,

Δ (!) =

∣∣∣∣
  (!)   +1(!)
  −1(!)   (!)

∣∣∣∣

Δ (!) is referred to as Turán’s determinant.
The result of Turán inspired considerable interest, and by now there is a vast

amount of publications on the so-called Turán type inequalities. G. Szegő [12]
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gave four different proof of (1.1). Soon after that, inequalities of similar nature
were obtained for other classes of functions including ultraspherical polynomials,
Laguerre and Hermite polynomials, Bessel functions, etc. Let us briefly recall a
general approach for derivation of Turán type inequalities

"2 (!) − " −1(!)" +1(!) ≥ 0, (1.2)

due to Skovgaard [9]. This approach is applicable to sequences of functions {" (!)},
which possess a generating function F (!; #) =: F (#),

∞∑

 =0

" 
# 

$!
= F (#) ,

and, in addition, the generating function F (#) belongs to the Laguerre-Pólya class
of entire functions. The latter class consists of the uniform limits on compact sets in
the complex plane of algebraic polynomials having only real zeros. Every function
from the Laguerre-Pólya class is representable in the form

F (#) = %&−!"
2+#"#$

∞∏

%=1

(1 − #/#%)&
"/" , (1.3)

where ( ≥ 0, %, ) and #% are real numbers, and
∑∞

%=1 #
−2
% <∞.

The logarithmic differentiation of (1.3) yields

+

+#

(F ′(#)
F (#)

)
= −2(−

,

#2
−

∑

%

1

(# − #%)2
,

and obviously the right-hand side is negative for every real #. Hence,

+

+#

(F ′(#)
F (#)

)
=
F (#)F ′′(#)− (F ′(#))2

F (#)2
≤ 0, # ∈ ℝ ,

and therefore (F ′(#))2−F (#)F ′′(#) ≥ 0 for every # ∈ ℝ. Since the Lagguerre-Pólya
class is invariant with respect to differentiation, it follows that for every $ ∈ ℕ

(F ( )(#))2 − F ( −1)(#)F ( +1)(#) ≥ 0, # ∈ ℝ .

Now, by substituting # = 0 one immediately arrives at (1.2). The range of ! ∈ ℝ
for which (1.2) is true is determined by the condition that F (#) = F (!; #) belongs
to the Lagguerre-Pólya class.

The approach described above is applicable to wide classes of orthogonal poly-
nomials and other special functions. The history of case of Jacobi polynomials

 
(!,#)
 is especially interesting. In 1960 S. Karlin and G. Szegő [6] posed the prob-

lem for characterizing the range of parameters {(, )}, for which the normalized

Jacobi polynomials -
(!,#)
 (!) =  

(!,#)
 (!)/ 

(!,#)
 (1) (so that -

(!,#)
 (1) = 1) satisfy

the Turán type inequality

(
-(!,#)
 (!)

)2
−-

(!,#)
 −1 (!)-

(!,#)
 +1 (!) ≥ 0, ! ∈ [−1, 1] . (1.4)
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Szegő [13] proved that (1.4) is true when ) ≥ ∣(∣, ( > −1. In two subsequent
papers G. Gasper [3, 4] improves consecutively Szegő’s result, showing finally that
(1.4) holds true if and only if ) ≥ ( > −1, thus solving the problem of Karlin and
Szegő. The particular case ( = ) corresponds to the ultraspherical (or Gegenbauer)
polynomials, which is the topic of this note. We recall below some well-known

fact about ultraspherical polynomials.  
(()
 (!) is the standard notation for the

$-th ultraspherical polynomial, which is orthogonal in [−1, 1] with respect to the

weight function /((!) = (1 − !2)(−
1

2 . The standard normalization of  
(()
 is

 
(()
 (1) =

(
 +2(−1

 

)
, but for Turán’s type inequalities the appropriate normalization

is
0(() (!) :=  (()

 (!)/ (()
 (1) . (1.5)

With this notation, Turán’s inequality for ultraspherical polynomials reads as

Theorem 1. ([9, 15, 16]) For every 1 > −1/2,

Δ ,((!) :=
[
0(() (!)

]2
− 0

(()
 −1(!)0

(()
 +1(!) ≥ 0, ! ∈ [−1, 1], (1.6)

and the equality occurs only for ! = ±1.

For the sake of simplicity, if there is no danger of ambiguity, hereafter the

superscript (() will be omitted, and we shall write 0 (!) instead of 0
(()
 (!).

We refer the reader to two important recent papers and the literature cited
therein. R. Szwarc [14] obtained rather general sufficient conditions for sequences of
orthogonal (with respect to a measure 2 with a finite support, say, 3"00 2 = [−1, 1])
polynomials to satisfy Turán’s type inequality on the support of the measure. In [1],
C. Berg and R. Szwarc studied the behavior of the normalized Turán determinants
Δ̃ (!) := Δ (!)/(1− !

2), in particular conditions ensuring monotonicity of Δ̃ (!)
are established. Both in [14] and [1] the conditions are expressed through the
sequences of the coefficients in the three-term recurrence relation satisfied by the
orthogonal polynomials.

In the next section we present a short proof of Theorem 1, based on the Hermite
interpolation formula. In Section 3 a recent refinement of Theorem 1 obtained in
[8] is presented and compared with the hitherto known results.

2. THEOREM 1 THROUGH HERMITE’S INTERPOLATION FORMULA

2.1. PRELIMINARIES

It is well-known that the classical orthogonal polynomials of Jacobi, Hermite
and Laguerre satisfy second order ordinary differential equations. In particular, the

$-th ultraspherical polynomial  
(()
 satisfies the differential equation

(1 − !2)4′′ − (21+ 1)!4′ + $($+ 21)4 = 0 , 4(!) =  (()
 (!) . (2.1)
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Since the derivatives of the Jacobi, Hermite and Laguerre polynomials are
also orthogonal polynomials, they satisfy certain first order difference-differential
equations (DDEs). Here we shall need some DDEs satisfied by the ultraspherical

polynomials  
(()
 . For easy reference, they are collected in the following lemma.

Lemma 1. The ultraspherical polynomials satisfy the following identities:

($+ 1) 
(()
 +1(!) + ($+ 21− 1) 

(()
 −1(!) = 2($+ 1)! (()

 (!) , (2.2)

$ (()
 (!) = !

+

+!

{
 (()
 (!)

}
−

+

+!

{
 
(()
 −1(!)

}
, (2.3)

($+ 21) (()
 (!) =

+

+!

{
 
(()
 +1(!)

}
− !

+

+!

{
 (()
 (!)

}
, (2.4)

(1− !2)
+

+!

{
 (()
 (!)

}
= −$! (()

 (!) + ($+ 21− 1) 
(()
 −1(!) , (2.5)

(1− !2)
+

+!

{
 (()
 (!)

}
= ($+ 21)! (()

 (!) − ($+ 1) 
(()
 +1(!) . (2.6)

See [11], Eqs. (4.7.17), (4.7.28) and (4.7.27).
As was mentioned in the preceding section, we shall work with the renormalized

ultraspherical polynomials 0%(!), defined by 0%(!) =
(
%+2(−1

%

)−1
 
(()
% (!) (the

dependence of 0% on 1 is suppressed, as 1 > −1/2 is fixed). On using Lemma 1, it
is easy to derive the analogous relations satisfied by {0%}.

Lemma 2. The polynomials {0%} = {0
(()
% } defined by (1.5) satisfy the following

identities:

($+ 21)0 +1(!) + $ 0 −1(!) = 2($+ 1)! 0 (!) , (2.7)

0′ −1(!) = ($+ 21− 1)
[!
$
0′ (!)− 0 (!)

]
, (2.8)

0′ +1(!) = ($+ 1)
[
0 (!) +

!

$+ 21
0′ (!)

]
, (2.9)

0 −1(!) =
1− !2

$
0′ (!) + ! 0 (!) , (2.10)

0 +1(!) = ! 0 (!) −
1− !2

$+ 21
0′ (!) . (2.11)

Let {!)}
 
)=1 be the zeros of 0 (!); they are all distinct and located in (−1, 1).

For any function 5 defined in [−1, 1] and differentiable in (−1, 1), let 62 +1(5 ;!)
be the Hermite interpolating polynomial satisfying the interpolatory conditions

62 +1(5 ;−1) = 5(−1), 62 +1(5 ; 1) = 5(1) ,

62 +1(5 ;!)) = 5(!)), 6 ′2 +1(5 ;!)) = 5 ′(!)),

(7 = 1, 2, . . . , $) .

(2.12)
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Lemma 3. If 5 is a function defined in [−1, 1] and differentiable in (−1, 1),
which satisfies 5(−1) = 5(1) = 0, then

62 +1(5 ;!) =
 ∑

)=1

[
Φ),0(!)5(!)) + Φ),1(!)5

′(!))
]
, (2.13)

where, for 7 = 1, 2, . . . , $,

Φ),0(!) =
1− !2

1− !2)
ℓ2)(!)

[
1 + (1− 21)

!)(!− !))

1− !2)

]
,

Φ),1(!) =
1− !2

1− !2)
ℓ2)(!) (! − !)) ,

and

ℓ)(!) :=
0 (!)

(!− !))0′ (!))

is the 7-th Lagrange basis polynomial for interpolation at the zeros of 0 .

Proof. All we need is to show that {Φ),0(!)} and {Φ),1(!)} are the Hermite
basis polynomials for interpolation at the nodes −1, !1, !1, !2, !2, . . . , ! , ! , 1.

Obviously, Φ),*(±1) = 0 for 9 = 0, 1, Φ),1(!+) = 0 and Φ),0(!+) = <+,) for

=, 7 = 1, 2, . . . , $, where <+,) =

{
1, = = 7

0, = ∕= 7
is the Kronecker symbol. It remains

to verify that Φ′),*(!+) = <+,) <*,1 for =, 7 = 1, 2, . . . , $ and 9 = 0, 1. The verification
is straightforward in the case = = 7, 9 = 1, and the same applies to the case = ∕= 7,
9 = 0, 1, since in that case ,

,-

{
ℓ2)(!)

}
∣-=-!

= 2ℓ)(!+)ℓ
′
)(!+) = 0. Now we consider

the case = = 7, 9 = 0. By the L’Hospital rule we have

+

+!

{
ℓ2)(!)

}
∣-=-" = 2ℓ′)(!)) = 2

0′ (!)(! − !))− 0 (!)

(!− !))20′ (!))

∣∣∣
-=-"

=
2

0′ (!))
lim
-→-"

0′ (!) + 0′′ (!)(! − !))− 0′ (!)

2(!− !))
=
0′′ (!))

0′ (!))
.

Taking into account that 0 (!)) = 0 and 4 = 0 satisfies (2.1), we find

0′′ (!)) =
(21+ 1)!) 0

′
 (!))

1− !2)
⇒

+

+!

{
ℓ2)(!)

}∣∣
-=-"

=
(21+ 1)!)
1− !2)

.

Hence,

Φ′),0(!)) =

(
1− !2

1− !2)

[
1 + (1− 21)

!)(!− !))

1− !2)

])′∣∣∣∣∣
-=-"

ℓ2)(!))

+
1− !2

1− !2)

[
1 + (1− 21)

!)(! − !))

1− !2)

]∣∣∣∣∣
-=-"

+

+!

{
ℓ2)(!)

}∣∣
-=-"

=

(
−2!)
1− !2)

+
(1 − 21)!)
1− !2)

)
⋅ 1 + 1 ⋅

(21+ 1)!)
1− !2)

= 0 .
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Lemma 3 is proved.

By the uniqueness of the Hermite interpolating polynomial we immediately
obtain

Corollary 1. Assume that  (!) is an algebraic polynomial of degree not ex-
ceeding 2$+ 1, and  (−1) =  (1) = 0. Then

 (!) =

 ∑

)=1

[
Φ),0(!) (!)) + Φ),1(!) 

′(!))
]
.

2.2. PROOF OF THEOREM 1

We observe that Δ ,((!) =
[
0 (!)

]2
−0 −1(!)0 +1(!) satisfies the assumptions

of Corollary 1. Indeed, Δ ,((!) is a polynomial of degree 2$, and since 0%(1) = 1
and 0%(−1) = (−1)%, it follows that Δ ,((±1) = 0. By Corollary 1,

Δ ,((!) =

 ∑

)=1

[
Φ),0(!)Δ ,((!)) + Φ),1(!)Δ

′
 ,((!))

]
. (2.14)

We apply Lemma 2 to represent 0 −1(!)), 0 +1(!)), 0
′
 −1(!)) and 0′ +1(!))

in terms of 0′ (!)). We obtain

0 −1(!)) =
1

$
(1− !2))0

′
 (!)), 0 +1(!)) = −

1

$+ 21
(1− !2))0

′
 (!)),

0′ −1(!)) =
$+ 21− 1

$
!) 0

′
 (!)), 0′ +1(!)) =

$+ 1

$+ 21
!) 0

′
 (!)) .

Next, we express Δ ,((!)) and Δ′ ,((!)) in terms of 0′ (!)):

Δ ,((!)) = −0 −1(!))0 +1(!)) =
1

$($+ 21)
(1− !2))

[
0′ (!))

]2
,

Δ′ ,((!)) = −0
′
 −1(!))0 +1(!))− 0 −1(!))0

′
 +1(!))

=
2(1− 1)

$($+ 21)
!)(1− !2))

[
0′ (!))

]2
.

Replacement of Δ ,((!)) and Δ′ ,((!)) in (2.14) yields

Δ ,((!) =
1− !2

$($+ 21)

 ∑

)=1

ℓ2)(!)(1 − !)!)
[
0′ (!))

]2
.

This accomplishes the proof of Theorem 1, since 1− !)! > 0 for ! ∈ [−1, 1].
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3. A REFINEMENT OF TURÁN’S INEQUALITY

The Turán determinant Δ ,((!) vanishes at ±1, and a fine result of Thiru-
venkatachar and Nanjundiah [15] (see also [16]) states that in (0,∞) the normalized
Turán determinant

> ,((!) :=
Δ ,((!)

1− !2

is monotone increasing when 1 > 0 and monotone decreasing when −1/2 < 1 < 0.
In particular,

? ,( ≤ > ,((!) ≤ % ,( , ! ∈ [−1, 1], (3.1)

with the sharp constants 0 < ? ,( < % ,( given by

? ,( = 02 (0)− 0 −1(0)0 +1(0), % ,( =
1

21+ 1
, if 1 > 0 ,

and with the interchanged formulae for ? ,( and % ,( if −1/2 < 1 < 0. That is to
say, ? ,( and % ,( are the best possible bounds for > ,((!) in the ”uniform sense”,
i.e., for the whole interval [−1, 1]. However, for particular !’s improvements are
possible.

Recently, in a joint work with V. Pillwein [8] the author proved the following
result:

Theorem 2. Let 0% = 0
(()
% be the @-th ultraspherical polynomial normalized

by 0%(1) = 1, @ ∈ ℕ0. If 1 ∈ (−1/2, 1/2], then for every $ ∈ ℕ

Δ̃ ,((!) := ∣!∣0
2
 (!)− 0 −1(!)0 +1(!) ≥ 0 ∀! ∈ [−1, 1]. (3.2)

The equality in (3.2) is attained only for ! = ±1 and, if $ is even, for ! = 0.
Moreover, if 1 > 1/2, then (3.2) fails for every $ ∈ ℕ.

A computer proof of the special case 1 = 1/2 of Theorem 2 was given earlier
by Gerhold and Kauers [5].

In view of Theorem 2, Δ ,((!) = Δ̃ ,((!) + (1 − ∣!∣) 02 (!) ≥ (1 − ∣!∣) 02 (!)
for 1 ∈ (−1/2, 1/2], hence

> ,((!) ≥
02 (!)

1 + ∣!∣
=: A ,((!) , 1 ∈ (−1/2, 1/2]. (3.3)

A result of a similar nature, due to O. Szász [10], asserts that

> ,((!) ≥
1(1− 02 (!))

($+ 1− 1)($+ 21)
=: ℎ ,((!)(1 − !2) , 1 ∈ (0, 1) . (3.4)

In view of (3.1), (3.3) and (3.4), it is of interest to compare > ,((!) with its
lower bounds
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