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data. Thus we have a case of a repellent potential energy term in the relevant energetic
identity, contrary to the attractive energy case described by the well-known equation
Ou = ~ulu[P~!. The global existence result for 0 < ¢ < 2 is first established. Then
special “counterdecay” (for 0 < ¢ < 2) and blow-up effects (for ¢ > 2) are found, which
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question that has arisen already in the pioneering works of Keller and Jérgens on the
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1. INTRODUCTION

Consider the semilinear wave equation
Ou = f(u), (1.1)

where 0 = 07 — A, A = A, = 377, d;,, n is the spatial dimension. For the
function f(u) it is assumed that f(u) = O (jul?), for |u| = 400 or |u| = 0, with a
certain parameter p > 0.

As it is well-known, there are two critical numbers p*(n) and po(n) that play
a prominent role in the theory of Eq. (1.1). They are defined as follows:

p*(n) = "t 2 ’ pO(n) = Z+, (12)
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where z7 is the positive root of the equation
(n-1)z"-(n+1)z-2=0.

The significance of the number p*(n) was revealed by Joérgens (6], by the results
of many authors afterwards, see, e.g., [1, 9], and in the more recent papers [3, 10,
12| and the references therein. This number gives an answer to the question for
the strongest nonlinearity of f(u), as |u| — +o0, which admits global (in time)
classical solutions to Eq. (1.1) without restrictions on the magnitude of the initial
data. In the above cited papers global existence results have been obtained in the
case 1 < p < p*, for an arbitrary magnitude of data, under the assminptions that
the potential energy term

Ujlu] E/O f(z)dz

is attractive, i.e. Ugu] < const, Vu, within the main class of functions f(u}) of the
torm

flu) = —ululP~. (1.3)

The second critical number pg(n) shows up for u close to zero, in the quest
for existence of global solutions with small enough data. The number py(n) has
been found by John [5] for n = 3, when py = 1 + /2, and by Strauss [11] for
an arbitrary n. It is noted that after the blow-up result in [5] for the equations
Ou = +u* (see also Lindblad [8]) with p = 2 — a number within the subcritical
interval 1 < p < 14 v/2, and the global existence result in [5] for p > 1+ /2, many
anthors paid a special attention to the cases of the critical value p = po(n) and to
the supercritical interval p > po(n).

In the present paper we consider the classical solutions of the Cauchy problem

Ou=uln(1+u%), 2R t>0, ¢>0, (1.4)

w(z,0) = @), wlz,0) =), =€R’ (1.5)

where ¢ € C%, ¢ € C?. (As usual, C* = C*(R?) is the space of the k-time smooth
functions.) The main results below shed more light particularly on the small data
problem for Eq. (1.1). (For more details see, e.g., [11, 13, 14].) When |u| is small,
we recover in Eq. (1.4) a particular case of Eq. (1.1) with p = 1+42¢. However, in the
suberitical interval ¢ < 1/v/2 (1 < p < 1+ v/2) the problem (1.4), (1.5) possesses
global solutions for arbitrary magnitudes of the data. From the view-point of the
interest of many authors to the so-called supercritical interval for Eq. (1.1). let us
note the following. For ¢ > 2 we have in Eq. (1.4) a whole interval of supercritical
powers p = 1 + 2¢, provided |u| is small; then, obviously, p > 5 > 1 + V2 (see
[5], where the critical value 1 + /2 is discussed in more details). Nevertheless,
our blow-up results (established below in Section 4) show that classical solutions
can exist for Eq. (1.1) (in the case (1.4)) with arbitrary small data, which blow
up in the case of big enough supports of the data. Such an “anomaly” seems to
be caused mainly by the repellent influence of the potential energy term U; in
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Eq. (1.4), when Uju] > const, Vu. Compared with (1.3), the nonlinearity of the
source term is much weaker than that in the right-hand side of (1.4). as [u] — 400,
but the potential energy term Uylu] is repellent. Taking into account the Keller’s
pioneering result [7] (see also that of Glassey [4] and the counter-example in [9, 12]
for (1.1) with f = u|u[P~1), one can expect an absence of global solutions of (1.1)
for repellent Uy, when the test life-span T7,

+00 2 -1/2
T 5/ (1 + 2/ f(s)ds) dz.
0 0

is finite. However, it remains an open question in general whether Eq. (1.1) pos-
sesses global classical solutions for arbitrary data (1.5) if Uy > const, but T}) = +00.
For Eq. (1.4) we answer this question in Section 4 below. More precisely, we show
that there exists a unique global solution of (1.4). (1.5) for 0 < ¢ < 2 (when
T}’ = +o¢). In Section 3 the behaviour of the positive solutions of the Newton
equation ©# = vIn?(1 + v?), associated with Eq. (1.4), is studied. In Section 4 it is
proven that the classical solutions of Eq. (1.4) increase exponentially (“counterde-
cay”) if 0 < ¢ < 2, and blow up if ¢ > 2, for data, either positive or negative, which
produce the so-called space-destinated waves. Thus it is shown, in particular, that
¢ = 2 is a critical value for the global classical solutions of Eq. (1.4).

2. TWO BASIC PRINCIPLES

Consider the following Cauchy problem for the semilinear wave equation:
Ou = f(u), z€R> t>0, (2.1)

u(z,0) = (), w(z,0)=1v(z), z€R’ (2.2)
where f € C*(RY), f(0) =0, and ¢ € C*(R*),¢ € C*(R*). Recall that a solution
u of Eq. (2.1) is called classical in a set G C R? x [0, +oc) such that G N {t = 0}
contains some domain in R® if u € C?*(G) N CY(G), G being the closure of G. For
a given compact K C R® we denote by K the part of the backward light cone
contained in the strip 0 < t+ < T and based on K at ¢ = 0. Similarly, K denotes
the forward light cone issued from K for 0 <t <T.

We suppose known the local existence theorem for (2.1), (2.2), and the theo-
rems for unigueness and the continuous dependence on the data.
Below we shall use the integral equation

u=u’+Ex fuh). (2.3)

Here " is the solution of the free wave equation Ou = 0, given by the classical
Kirchhoft formula

u(z,t) = G, L/ w(r + tw) ds,
477 Lwlzl

t
+ U(z + tw)ds,, w € R?,
4w lwj=1
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where E is the fundamental solution of the wave operator, ut = u (t > 0), ut =0
(t < 0), and E * f(u") is the convolution in R? in the usual distribution sense.
Recall also that the following known formula is valid for E x f(u™), namely,

t
Ex f(ut) = i/ T/ fu(z + 7w, t — 7)) ds,dr, (2.5)
dm 0 jw|=1
for z € R® and ¢t > 0.

2.1. COMPARISON PRINCIPLE

We realize here, in a new case, a classical comparison idea known, e.g., from the
theory of the finite-dimensional dynamic systems. The essence is to compare the
solution u(z, t) of (2.1), (2.2) with the solutions of the Newton equation # = f(v)
from below or above. In the next theorem we impose the following requirements
upon the function f:

fecC*RY, f(0)=0, f >0, (2.6)

in R', and use backward light cones C; in {0 < t}, based on closed balls B C R®.
(Obviously, a cone Cg can be represented as K with K = B and big enough T'.)
Now the comparison principle reads:

Theorem 2.1. Suppose the condition (2.6) holds for f(u). Let the functions
u(z,t) and u®(x,t) be the solution of (2.1), (2.2) and the function from (2.4), re-
spectively. Let C be a given backward light cone. Suppose also that u® satisfies

the inequality
uwO(z,t) > ay +bit, (z,t) €Cp, (2.7)

with certain constants ay, by > 0 depending on B. Then the following estimate
holds for the solution u:

u(z,t) > vi(t), (z,t) e CoNGN{0<t<Ti}, (2.8)
where vy (t) is the solution of the Cauchy problem
b= f(v), v(0)=a, v(0) =", (2.9)

defined for t € [0,T1), for a positive Ty, with a = ay, b = by. Similarly, we have
the estimate

lu(z,8)] < va(t), (z,t) € C5NGN{0<t < Ty}, (2.10)

if va(t) is the solution of Eq. (2.9), defined fort € [0,T3), Ty > 0, with data a = as,
b = by, where
1u®(z,t)] < az + bat, (z,t) € Cg, (2.11)

and as, by > 0 are certain constants depending on B.
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Proof. Take an arbitrary backward light cone K. such that
KrCcCgnGn{0<t<T}

and set,
wy (8, T) = minu(y,t), (y,t) € K, t€[0,T),
v

with fixed ¢. Note that the solution u is non-negative in K7 : this follows from the
condition (2.7) and the positivity of the operator in (2.5). For a fixed t € [0,7), in
virtue of Eq. (2.3) and the inequality (2.7), we have the estimate

wy(t,T) > a; + bt +min E * f(u™)(z,t), (x,t)€ K. (2.12)
xr
Next, we can easily verify the inequality
Ex f(u)(z,t) > Ey * f(w)(t), (x,t) € K7, (2.13)

where Ej is the fundamental solution of the operator d?/dt?, and

Eo * f(w)(t) =/:sf (un (t —s,T)) ds. (2.14)
Indeed, the formula (2.5) shows that the fundamental solution E represents a pos-
itive measure and because of the monotonicity of function f we have
Exf(u®) > Exf(w])=Eox f(w), (z,t)¢€Ky.
Then from (2.12), (2.13) we obtain
wi (8, T) > ay + byt + Eo = f(w)(t,T), te0,T). (2.15)

Now it is natural to compare the function w;(¢,7") with the solution v;(t), using
that vy (t) solves the equation

vi(t) =ay + bt + Eo * f(u7)(t), t€[0,T). (2.16)
Employing familiar arguments, it is not difficult to show that
wi(t,T) > vi(t), Vte0,T),

which proves (2.8), because K is an arbitrary cone.
To prove the estimate (2.10), we utilize fully similar arguments. We now set

wa(t,T) = max {u(y, )l (y.t) € Kr, € [0,T),

with fixed t. Then
w2 (t,T) < ag + bat + Ep = f(wy )(t, T)

as a consequence of (2.3), (2.11) and the properties of convolutions E * f(u*),
Ep * flw™). Next it remains to compare the function wy(t,T) with the solution
vy(t), repeating the arguments from the comparison of wq and v;. This completes
the proof of Theorem 2.1. 0O
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2.2. CONTINUATION PRINCIPLE

This principle gives an affirmative answer to the natural question, concerning
time extension of the classical solutions of Eq. (2.1), dominated by certain “super-
solutions.”

Theorem 2.2. Suppose (2.6) is valid for f(u) and the following inequality

holds for the function u®:

Oz, t)| <a+bt, (2.1) € Ky,

for a given cone K, with constants a,b > 0 depending on Ty. Let v(t) be the
solution of the pvoblem (2.9) defined for t € [0,T], T < Ty. Then there exists a
unique classical solution ur of (2.1), (2.2) in K, which coincides with u in GNIK 1,
where

Kr=K;,n{0<t<T}

The proof, being known, is omitted (see, e.g., [5] and the references cited
thercin). 0O

2.3. POSITIVE AND NEGATIVE SOLUTIONS

In this section we establish the existence of positive and negative solutions of
Eq. (2.1). We introduce a class of solutions called space-destinated waves and note
that they are positive or negative solutions, for ¢ > 0, if the initial data are positive
or negative, respectively. To this end we use the Lorentz pseudometric mp,

my, = dt* - |dz|?, |dz|* = (dz')? + (da®)? + (d2®)?, == (z' 2%.2%).

Following Friedlander [2], we recall the relations

3
77"'1/(6! Tl) = £0n0 - ijﬂjsmb(faf) = (60)2 - |£,|2: (217)

j=1

where ¢ = (€',€2,€%), 1€] = \/¥;_1(&)?, and & = (£,€°), n = (n',n°) are

arbitrary vectors in R3*1,

Definition 2.1. A classical solution u(z,t) of (2.1) is called a space-destinated
wave if the set

To = {(z,1) € R**": u(z,1) = u(zo,0)}

is a non-degenerated smooth 3D-hypersurface in a neighbourhood of (zo,0), Yz €
I3, and the following inequality is fulfilled:

(_1)7n[4(€1§) 2 Oa £ € T(IQ,O)(EO)) f # Oa (218)



where T, 0,(X0) is the tangent hyperplane to % at the point (29,0). A classical
solution w is called a strongly space-destinated wave if the inequality (2.18) is
strong.

Remark 2.1 (existence of space-destinated waves). It is not difficult to verify
(sce, e.g., [2]) that (=1)m; > 0 on the tangent space from (2.18) if and only if
my (u'{@o, 0}, u'(20,0)) > 0, where u'(z,t) € R**! is the gradient of u(z,t) at the
point (z.t). Now, using the coordinate representation w'(z,0) = (Ve(z), ¥ (2)).
where u(z.0) = p(x),u(2,0) = ¢(z), and Vi is the gradient of o, we apply the
formula (2.17) for £ = n = «' and reach the following conclusion. A classical
solution u(x,) is a space-destinated wave if and only if the data (), v:(x) have
the properties

(Vo) w(@) #0, (@)| — [Ve(a) > 0, z € B,

Proposition 2.1. Suppose the function f satisfies the condition
flu) € C*(RY), uf(u) >0, ue R,

and the solution u(z,t) of (2.1), (2.2), defined on a set G, is a space-destinated
wave. Then u(x,t) is positive in G, for t > 0, if the initial data u(x,0), (x,0) are
non-negative, for x € R*, and at least one of the following two conditions hold:

(1) u(z,0) #0, z € R*;

(i) u(z,t) is a strongly space-destinated wave.

Similarly, the solution u(z.t) is negative in G, for t > 0, if the initial data are
non-posttive and at least one of the conditions (i), (ii) holds.

The proof is omitted, because the key ideas can be taken from the proof of
Theorem 2.1. [

Since the nonlinear part f(u) of Eq. (2.1) is odd, the following connection
between positive and negative solutions of this equation is obvious.

Proposition 2.2. Suppose the function f(u) satisfies the condition
flu) € C*(RY),  f(-u) = —f(u), Yu.

Then the map u(x,t) — —u(x,t) is a bijection between the sets of the positive and
the negative classical solutions of (2.1).

3. POSITIVE SOLUTIONS OF A NEWTON EQUATION

The so-called automodel solutions of the problem (1.4), (1.5), when the initial
data are constants, satisfy the Cauchy problem for the Newton equation:

i =uln?(1+u?), t>0, (3.1)
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w(0) = up, (0) = uy, (3.2)

where ug, u, are constants. We study here the behaviour of the positive solutions
u(t) of (3.1), (3.2), provided up > 0, uy > 0 and ug+u; > 0. The positive solutions
of (3.1), (3.2) play the role of sub- and super-solutions for the wave equation (1.4),
estimating the solutions of (1.4), (1.5) under the assumptions of the comparison
principle (Theorem 2.1). For the solution u(t) of (3.1), (3.2} we shall use the
following well-known formulae:

t
u(t) = ug +wuyt +/O (t — s)f (uls)) ds, (3.3)

u(t) . z -1/2
t = / (uf 42 / f(s)ds) dz, (3.4)
uge ug

where f(u) = uln?(1 + u?).
A basic property of the positive solutions under discussion is given by the next
lemma.

Lemma 3.1. If ug > 0,u; > 0, up +uy > 0, then the solution u(t) of the
problem (3.1), (3.2) is positive and defined in a mazimal interval [0, T%). Moreover,
u(t) is a monotonically increasing function in [0,T°) such that

limu(t) = +oo, t— T (3.5)

Proof. Let us write the relation (3.4) in the form F(u) = t, where

F(u)E/ (ul-!-?/ f(s)d )‘1/3 dz, u > ug.

Due to the monotonicity of the function F' we have, for the solution u(t) of the prob-
lem (3.1), (3.2), u(t) = F~'(t), where F~! is the inverse function of F'. The state-
ments of the lemma directly follow from the classical theory of the Newton equa-
tion. O

In the next lemma we study a general estimate for the solution u(t).

Lemma 3.2. Let u(t) be the solution from Lemma 3.1, defined for t € [0,T°)
and ¥(z) = 2(z — ug) In7(1 + 2%). Then the solution u(t) satisfies the estimate

/u(u%-#?z,b(z)) 1/2 dz<t</1+¢ / 1+q)u,+t[)( )) 1/2 dz (3.6)

0

for all t € 0,79, u = u(t).

Proof. We begin by studying the function ¢(u) =2 / f(s)ds:

Uo

u 14u
cp(u)=2/ s]n"(1+32)ds=/ In?tdt.

2
1] I+ug
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Then

@'(2) = 2zIn9(1 + 2?%),
2¢z>
1+ 22

Vi(z) = (22 —ug) In?(1 + 2%) + (z = up) In? (1 + 22).
Next we use the estimate for ¢’ (z):
Y(z) < 2zIn%(1 + 2%) + 2¢zIn9(1 + 2%, 2> u,.

It follows from the above formula for ¢'(z), together with the inequality 2%(1 +
z*)71 <In(l + 2?%). Estimating ¢'(z) from below, we obtain

¥(z) > zIn?(1 + 2%) = %w’(z), z > up.
Hence 1

59 (2) SU(2) (1 +9)¢'(2), 2> up,

and because of the initial data w(up) = ¥(ug) = 0 we obtain the inequality

26() SU(E) < 1+ Qp(a), 2> o (37)

From (3.4) we see that

t= / 4 e) ™ ds u= (),

wp

and applying (3.7) we establish the estimate

>, Y(z) -
uj + Ttg < ui +9(2) < uf + 29(2),

which yields (3.6). O
The next lemma is a direct consequence of Theorems 2.1 and 2.2.

Lemma 3.3 (comparison and continuation principles). Suppose u(t), v(t)
are the solutions of (3.1), (3.2) with data (ug,u;), (vo,v1), defined in the mazimal
intervals [0,T,), [0,T,), respectively. Then:

(i) u(t) <wo(t), te€[0,T,)N[0,T,),
if 0<u; <y, 5=0,1;

(ii) T 2T,

if u(t) <welt) in [0,T,)N{0,T,).

Below we shall employ systematically the general estimate (3.6) in order to
study the global solutions of the problem (3.1), (3.2) (0 < g < 2), their large time
behaviour and the blow-up phenomena (2 < g¢).
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Lemma 3.4 (global solutions). Let0 < ¢ <2 andug > 0, uy > 0, ug+u; > 0.
Then the solution u(t) of the problem (3.1), (3.2) is global, i.e. TV = +oc, and for
0 < q < 2 satisfies the estimaie

9 /(9_ 2
u(t) <exp((d+u)t)” 7 t>3+uo+ o> 0<g<2, (38
0,1
where do; = In“*(1+u}) if ur = 0, doy = uy if ug =0, and do; = min{In?>(1 +
'US), u.1} ?f wug > 0.
Proof. Suppose 0 < ¢ < 2. Consider firstly the case ug > 0, u; > 0. In virtue
of (3.5) we can chose t; € (0, 7Y such that u(t) > 2+ ug for t > t;. Then, due to
(3.6}, we have

tg/ (uf+:2(_1+—z)'22‘11n"(1+z))'”2 dz  (t > 1,).

24ug

Therefore

u
(-u;—’+8)*1/2/ (1+2)'in (1 +2)dz<t. t>1. (3.9)
2-+ug

But e
/ (1+2) ' In"?*(1 + 2)dz = +00
2+4ug
and (3.9) shows that the solution u(t) is global. The inequality u(t) > ug + uyt >
2 + g, valid for ¢t > 2/uy, and (3.9) yield

In' 214 u) < B +u)t +In' 23 4 up) < (d+ut (t>3+u).

The estimate (3.8) obviously follows now with dy;; < wuy. In the casc uy > 0,
11 > 0 we argue in a similar manner - — noticing that u(t) is global and employing
the formula (3.3) to get

u(t) > uo + (#°/2) flug) > 2+ ug (t > 2/\/f(uo), fluo) = ueln?(1+ ug)) :

Then (3.8) also follows but with dyy < \/f(ug). Suppose now g = 2. In the case
ug > 0,u; > 0 we reach again (3.9) and the solution u(t) is thus global. [

Lemma 3.5 (lower estimates). Let 0 < g < 2 and T > 1 be « parameter.
Suppose the initial data (3.2) depend on T, i.e. up = ugr, w1 = uy,r, satisfying
the assumptions

0 < w7y '1%? <uyr, (3.10)

c1 > 0 being a constant. Then the solution u(t) of the problem (3.1}, (3.2) satisfies
the estimate

2/(2—q)
9 —
u(t) > (4/c1) exp ( 16qh't) , te2T/3,T] (0<g¢<2), (3.11)
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when T > 24/(2 = q)h* and h* = /(64 + cf).

The proof uses arguments fully similar to those from the proof of Lemma 3.4.
That is why it is omitted. O

Lemma 3.6 (blow-up time). Suppose ¢ > 2 in Eq. (3.1) and uou, > 0,
ug +uy > 0. Then the life-span T is finite for the solution u(t) of (3.1), (3.2),
which blows up at the moment T®. Moreover, the blow-up time T® can be estimated

us follows:
1

: <7
20/2(q — 2)(1 + uy ) (1 + wg)?/2-1 — N
(3.12)
— (V3 2
: 1+q(ul T G- ) > 0)
! <71

20/2(q — 2)(1 + ug J{(1 + ug)4/2-1 —

3+ up 4
1 2 5 = > 0).
+4 ( \/uo In?(1 + ug) " 24/%(q — 2)) (uo )

Proof. To estabhsh the left-hand sides of (3.12), (3.13), we shall use the left-
hand side of (3.6). For the sum u? + 24(z) we have

(3.13)

u? 4 20(z) < ud + 2220 (1 + 2%) < (1+w)?(22)2 In(22)?,

when 2 > 1+ ug. From (3.6) it follows

TO > /Mo dz _ In'~%%(2 + 2up) ‘
T Nitue (14 1)20/2221n2(22) 292 (q = 2)(1 + w1)
Afterwards we use the inequality In2(1 4+ ug) < 1 + ug, which yields the upper

estimates of (3.12), (3.13). In the case of u; > 0 we can consider ug = 0 (due to
the comparison principle). Then from (3.6), taking the appropriate limit, it follows

(¥(2) = 22 In?(1 + 27)).

+o0 dz
T <1+ / ~
a ! 0 /3uj +¥(z)

But for the just defined function v(z) we have ¥(z) > 29z%In? z for z > 3. Hence

T° < /1+¢ / ”H /m
\/§U1 24/2 z ln"/2

and the right-hand side of (3.12) immediately follows.
If up > 0, we can similarly consider u; = 0 (again recalling the comparison
principle). Next, employing the estimate

W(z) > (2 —up)* In9(1 4+ 2%) > 297222 1In% 2
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for z > 2ug, we obtain from (3.6)

o 342ugp dz
TS\/1+q/ +1+¢q /

o Vo Inf (1 + ud)(z — up)

3420, 20/2 lzln"/z

which gives the right-hand side of (3.13). The blow-up property limu(t} = +o0 for
t — T has been already established in Lemma 3.1. [

4. GLOBALITY, COUNTER-DECAY AND EXPLOSION OF SOLUTIONS

In this section the main results of the paper are formulated and proven for the
class (1.4), where the potential energy contains a repellent term. It becomes clear,
in particular, that for Eq. (1.4) ¢ = 2 is a critical value when the global existence
problem for arbitrary big data is considered.

Theorem 4.1 (global solutions). Let 0 < ¢ < 2 in Eq. (1.4) and ¢(z) € C3,
w(z) € C? are arbitrary functions. Then the classical solution u(z,t) of the problem
(1.4), (1.5) is global.

Proof. By the local theory the classical solution of (1.4), (1.5) exists in a set
G C R® x [0,400). Let T > 0 be arbitrary big. Choose an arbitrary ball B C R*
with a radius R > T and let K7 be the backward light cone (see Section 2) based
on the compact K = B, K C {0 <t <T}. Let

o = max[p(z), b=max(|Ve()| + b)), € B.
Then for the free wave u®(z,t) (see formula (2.4)) we have
WO(z,t)| <a+bt, (z,t)€Cy,

where C'g is the backward light cone based on B and K = CzN{0 <t < T}
for K = B. Moreover, the solution v(t) of the problem (2.9) is global in the case
of f(v) = vIn?(1 + v?), q € (0,2], according to Lemma 3.4, and v(t) is defined,
in particular, for ¢ € [0,7]. Now the continuation principle (Theorem 2.2) assures
that the solution u(z,t) is indeed defined in K. This proves the theorem. [J

Theorem 4.2 (exponential counter-decay). Let 0 < ¢ < 2 and let the classical
solution u(z,t) of the problem (1.4), (1.5) be a strongly space-destinated wave, with
either non-positive or non-negative initial data, satisfying the inequality

inf (1+|z[) ([Y(z)] = [Ve(z))) >0, z€ R (4.1)

Then for each compact K C R® there exist positive constants c',h', t' = t'(K) such
that

2/(2—q
lu(z,t)| > (4/c")exp (%h' ) (0<q<?2) (4.2)
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on KLn{t > t'}, where KL = UK}, T € (0,400), is the forward light cone issued
from K. If, moreover, we have

sup (f(@)| + [Vo(@)] + [¥(2)]) < +00, o € R, (43)

then the solution u(x,t) satisfies, besides (4.2), the estimate
[u(z, )] < exp (447" vt > ¢, (4.4)

as well, with certain positive constants ¢ and t" = t"(cg, ¢").

Proof. For a given compact K C R* let us fix a ball By C R® with a radius rq
such that K C Bp. Translate next the origin in R?® at the center of By. Obviously,
it suffices to consider only the case of non-negative initial data, due to Proposition

2.2. Now (4.1) shows that the constant c¢;, defined as

cr = inf(1 +[zf) (¥(z) - [Ve(z)]) (4.5)

1s positive.

Let us take an arbitrary T > 1 + ry and an arbitrary point (z7,7T) € KI.
Denote by C~(zr) the backward light cone with the top at (z7,T). From the
Kirchhoff formula we obtain the following inequality for the free wave u°(z,t):

1 ,
@02 | W)= Ve ds, (46)

When (z,t) varies in the cone C (zr), we have obviously
| <ro+2T, yeR: |z —y|l=t,
and from (4.5) we find

o €1 ¢

— > > >
W) - IVeWl 2 TS r 2 T 2 T T

with ¢ = ¢;/3. Then (4.6) yields

!

u(z,t) > t, (z,t) € C (z7).

c
1+77
Now we can apply the comparison principle (Theorem 2.1) to find

u(z,t) > vp(t), (z,t) € C (ar),

where vy (t) is the solution of the problem

i =viIn?(1+v?), ©»(0)=0, (0) =

105



Afterwards it remains to apply Lemma 3.5 and to set (z,t) = (xy,7T), then
2-q o/t
mlh.’T)“’/““” (0<q<2).

This proves the estimate (4.2). When (4.3) holds, we set

u(ar, T) > vr(T) > (4/¢) exp

co = sup lp(z)l, " =sup (IVe(a)] + |0(x)]) ,

K

and using the Kirchhoff formula we get
()| <o+ 'ty (x.t) € R x [0, +00).
Then, in virtue of Theorem 2.1, we conclude that
lu(z, t)] < Ut), (z,t) € R® x [0, +00),
with U(t) solving the equation
7= U1+ U2, U0)=cy UO)=c"

It is clear now that the estimate {4.4) follows from Lemma 3.4. 0

In the next theorem we shall deal with the classical solutions u(z,t) called
space-destinated waves on a given compact K C R?, which satisfy the requirements
of Definition 2.1 for each € I{. The notations

mo = min Ju(z,0)], z € K, (4.7)
&£
my = mzin (Jue(z,0)] — [Vyu(z,0)]), z € K, (4.8)
: : V3 3+ mo ,
= hl}(') o (6'3 +my 2 24 moln¥ (1 +m3) |’ mo +m 70, (4.9)
My = maxju(z,0)],2 € K; (4.10)
M, = m;'-,tx(|ut(:1:,0)l + |Veu(z,0)}), v € K, (4.11)

shall be used for a given space-destinated wave u(z.t) on K. By T, = T,(u, K)
we shall denote the supremum of all 7 > 0 such that a given classical solution u
of (1.4) exists in the light cone K7; T, is usually called the life-span of u for the
compact K.

Theorem 4.3 (blow-up of the solution). Suppose ¢ > 2 and ¢ € C°, ¢ € C?
are arbitrary initial dota, either non-negatwe or non-positive on a ball B, C RS,
such that the solution u(x,t) of (1.4), (1.5) is a space-destinated wave on B, (r
is the radius of the ball). If the numbers m;(r), j = 0,1, and 7o(r) satisfy the
inequalities

| 22-4/?
mo(r) +my(r) >0, 1+4¢ (To('l‘) + T2 ) <r,
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then the solution u(x,t) blows up in o finite time and the life-span T, o(r) =T,(u, By)
satisfies the estimates

2702 (1 4 My(r))' "
(g —2) (1 + Mi(r))

_ ‘ -2‘2—«[/".2
ST,(r) < V1+yg (To("‘) + ) ,
q—2
where m(r), M;(r), j = 0,1, and 79(r) are the constants from (4.7)~(4.11) with
K =B,
Proof. By the Kirchhoff formula we obtain the estimates
mo(r) 4+ tmy (r) < [u® (@, t)] < Mo(r) + M, (r)

for u”(2.t) on the backward light cone €'~ (r) = K4, where K = B,,T =r. In
addition, »°(2.1) is either positive or negative on C~(r) N {t > 0}. Then the
comparison principle yields

v(t) < julz, t)l, () € C7(r): 0 <t <min (r, T2, T,(r)), (4.12)

lu(z,t)] <U(t), (x,t)€C7(r):0<t<min(r, Ty(r), ), (4.13)
where v(t) and U(?) satisfy the equation Z = zIn%(1 4 2?) with the initial data
(m.my) and (Mo, A7) and the life-spans T2, T]}, respectively. Next, from Lemma
3.0 we see that

2742 (1 + My)' /2 22-9/2
0> o . T < /1 . 4.14

Then the estimates (4.12)-(4.14), together with the inequalities
Tg S Tq('l') S Ta?’

prove the theorem. [
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