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the initial condition u(x,0) = f(x) is replaced by the nonlocal A. Dezin’s condition

pu(0) — uw(T) = f(x), p # 1. To this end three types of operational calculi are devel-
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oped: 1) operational calculus for 7 with the Dezin’s functional, 2) operational calculus
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I. INTRODUCTION

d . .
In [3] a general operational calculus for 7 with arbitrary boundary value func-

tional @ is developed. Following the pattern of Mikusinski’s operational calculus
(6] in the space C'[0, 1], the convolution

U0 =2 { [ ft+7-0)glo)do | ()
instead of Duhamel’s convolution
t
(a0 = [ fe=ng@)ar @)



is used. For the details connected with the convolution (1) found in 1974 ([1]) by
one of the authors, see [2] and [3].

In order Mikusinski’s scheme to work, only the restriction {1} # 0 is needed.
Without a loss of generality then we may assume

®{1} = 1.

In the case ®{1} = 0 the Mikusinski’s scheme is also applicable, but with some
modifications.

In [4] and [5] A. A. Dezin considered non-local boundary value problems for
the differentiation operator with boundary value condition of the form

py(0) —y(T) =0 (3)
with g # 1. For unessential technical simplifications, in the sequel we assume that

u is real. The case of a complex u can be treated in almost the same way. Instead
of the functional uf(0) — f(7") we may take the normed functional

¥(f) = =5 Wf(O) - FT)

and then (1) takes the form
1 t T
(290 = == |u [ fe=namdr+ [ 1T +t-ngm)ar|. @
t
According to [2] operation (4) is a convolution of the right inverse operator

t T
) = [ s+ = [ seyar Q

of % in C[0,T). This means that f x g is a bilinear, commutative and associative
operation, such that

fxg)=(f) g
Since [ f(t) is determined as the solution of the boundary value problem
y'=f  py(0)-y(T)=0,

then from the representation

Lf(t) = {1} * ],
where {1} is the constant function 1, it follows that (4) is a convolution of [ in
clo, ).
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2. CHARACTERIZATION OF THE MULTIPLIERS
OF THE CONVOLUTION ALGEBRA (C[0,T], %)

According to Larsen [8], an operator M : C[0,T] — C[0,T] is a multiplier of
the convolution algebra (C[0, T}, *) iff the relation

M(f+g)=(Mf)*g
holds for all f,g € C[0,T). In [8] it is shown that each multiplier is a continuous
linear operator. From a general result of [2], p. 32, it follows that each multiplier
operator M of the convolution algebra (C[0,T], %) has the convolution representa-
tion
d

Mf=2(

mx* f), (6)

where m(t) € M{1}.
In order to characterize the multipliers it remains to specify the representation
functions m in (6).

Theorem 1. A linear operator M : C[0,T] — C[0,T] is a multiplier of the
convolution algebra (C[0,T), ) iff it has the representation

d i t 1 T
Mf(t)-a{;‘-:_—f/o m(t-—r)f(‘r)d'r+;1—_-_—l/t m(T+t—7')f(T)dr}, (7)

where m is a continuous function with bounded variation in [0,T].

Remark 1. If m € C N BV, then (7) can be written in the form
Mf(t) = / m(t — 7) dm(T) / m(T + t — 7) dm(7). (8)

Proof. From a more general result in [2], p. 32, it follows that each multiplier

of (C[0,T1],*) has the form (7), where m(t) M {1} is a continuous function. It
remains only to prove that m is a function with bounded variation in [0, T.

To this end let us fix t (0 < ¢t < T') and consider (M f)(t) as a linear functional
on C[0,T]. According to the F. Riesz representation theorem (M f)(t) has the form

T
- /0 £(r) day(7), (9)

where oy(7) is a function with bounded variation in [0,7"] depending on ¢ as a
parameter. For the sake of uniqueness we may assume that a;(7) is continuous
from the left. It would be possible to accomplish the differentiation in (6) termwise
provided m € C N BV, but we can assume only m € C, which is not enough to
ensure the differentiability. Therefore we apply the operator [ to (7) and obtain

t T

af=mef ==t | m(t—f)f(r>d~r+ﬁ [ m(T+t-nfndr (10
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since for g € C*[0,T] we have

I =g - #g((L) - 1g('T)

and the function g = m* f satisfies the boundary value condition pg(0) - g(T) = 0.
The operators M and [ commute since they both are elements of the multipliers

algebra and hence
IMf=MIf=mxf. (11)

From (9) we get

T T
(MLf)(t) = / (1) (1) dae () = (L UT)e(T) = (1£)(0) e (0) - f f(r)a(T)dr.
0 0 (12)
Comparing (10), (11) and (12) we obtain the identity '

N_l/m(t—r dT+———/ m(T +t—7)f(r)dr

T
— (Lf)(T)eu(T) = (LF)(0)as (0) - /0 F()ag(r) dr.

Since
(ALF)(T) = u(lf)(O ————/ £(r) dr,

then the right-hand side takes the form

_ /0 ! £(7) ,:at(T) + “a‘(i)_”lat(O)J dr.

If 7 is a point of continuity of oy, then the following two functional identities should

hold: T 0
—OZ((T)— uat( )—_lat( ) = u’ilm(t—r), OSTSt: (13)

and

— (1) — po(T) —e(0) 1 1m(T +t—7), t<t<T. (14)

p—1 Cp-
From (13) and (14) it follows that m € BV. Moreover, from (13) and (14) it follows
that m satisfies the boundary value condition um(0) — m(T) = 0. Indeed, if we
take 7 = t in (13) and (14), we get pm(0) = m(T').
d
If m € CN BV, then the derivative Zﬁ(m * f) exists as a function from C[0, T
and hence the linear operator

= ones



is well defined in C'[0,T]. Obviously, it is a multiplier of the convolution algebra
(C10.T7], ).

Since the operator [ has a cyclic element — the constant function {1}, then
the multipliers ring of convolution (4) coincides with the commutant of I (see [2],
p. 33).

Thus we obtained a complete characterization of the linear operators M :
C[0,T) - C[0,T], which commute with the integration operator I. This explicit
characterization can be considered as the “solution” of the non-local spectral prob-
lem considered.

In abstract setting the aim of any operational calculus for the operator [ reduces
to characterizing the class of operators commuting with /. But since the commutant
of I coincides with the multipliers ring of the convolution algebra (C[0,T], %), in
this abstract setting the spectral problem obtains its solution by means of Theo-
rem 1.

Usually, in the general spectral theory (see [9], pp. 287-296) only analytic
functions of a given operator are considered.

Here we prefer to develop a direct algebraic operational calculus for the oper-
ator I, following the multiplier quotients scheme instead of Mikusinski’s approach.

3. OPERATIONAL CALCULUS BY MULTIPLIERS QUOTIENTS

Here the basic elements of an operational calculus for the integration opera-
tor {(5) will be developed. One can follow either the Mikusinski’s scheme or the
multipliers quotients scheme proposed in [2].

The basic multiplier is the Dezin’s integration operator If = {1} » f. This
multiplier is the convolution operator [ = {1}*. Let M be the ring of the multipliers
of the convolution algebra (C[0,T],*) and A be the multiplicative set of non-zero
non-devisors of 0 of this algebra.

Let us denote by R the quotient ring of M with respect to A/, i.e. R = N~ M
(see [7], Ch. 2, Sec. 3). The elements of the ring R are quotients of the form

P
mzb-, where P € M and Q € \V.
We should always bear in mind the equivalence
P R
= = PS = RQ.
Q75 ?

If ¢ € C, we will use the same letter for the numerical multiplier ¢{f(¢)} =
{cf(t)}. By 1 we denote the unit of R, which is different from the convolution
multiplier {1} = [. Then the algebraic inverse element of / will be denoted by

.
Sl
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Theorem 2. If f € C*[0.T), then the relation

py(0) — y(T)
-1

y =sy - (15)

py(0) — y(T)

holds, where the term is viewed not as a constant function, but as a

numerical multiplier, and y and y' are the convolution multipliers {y}* and {y'}*,
respectively.

Proof. It is easy to verify the identity

py(0) —y(T)
u—1

Y () = (0) = 9(0) + —— (D) - ¥(0)} = (1) -

If we express this equality as an identity of multipliers, it takes the form

(16)

Multiplying both sides by s, we obtain (15).

Remark 2. We will refer to (15) as the basic formula of the Dezin’s operational
calculus.

Theorem 3. If A € C and A ¢ (ln || + 2mmi), m € Z, then

1 [eMu-1)
s—/\_{ i — e T } (17)

Proof. Using (15), we obtain

AT
A {eM} = s{eM} — MeM) —/\{e*t}+ 1 — MM}

and (17) is obvious.

4. OPERATIONAL CALCULUS BY TRANSFORM APPROACH

An alternative approach is based on a finite integral transform associated with
the Dezin’s condition. (For a transform approach for a more general boundary
value condition, see Dimovski [3].)

This finite integral transform can be defined, using the resolvent operator

At _1)
RAf.—_{E”—E_EeTT—}*f. (18)
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Then the F. Riesz projector is defined as

Pulf) = =5r; [ Rafih, (19)
Fin

. 1
where I';, is a small contour around the zero A,, = ;f(ln || + 2mmi), m € Z, of

From (18) it follows that
Pmif} = {em(t)} * f,

1 eMp—1 ~1
em(t) D p / 4 (_ue)\T) d\ = "UMTCI\"J.

where

It is easy to verify the idempotency property

x2

€ = Em* €m = Em.

[t corresponds to the fact that P,, is a projector operator.
Using (4), it is easy to find that

T
Pm{f} = (#/0 e—Amrf(T) d"') em(t)

The coefficient of e,,(t) is the corresponding finite Fourier transform

T
fm{f}=;f—1/0 e f(r)dr,  meL (20)

This transform could be used as an alternative approach to the operational calculus
we considered by a direct approach. In the following theorem we summarize the
basic operational properties of the finite integral transform (20) for arbitrary m € Z.

Theorem 4. For arbitrary m € Z the following equalities hold:

A 1
(i) f1n{1} = rv

m

(ii) fm{lf} = X}r‘; m{f};

(ii) Flf} = AnFmif} - 2 ((L) - f(T)

-1 ?
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(iv) Folf =9} = Foud F} Fmdg}s

and the inversion formula
(v) f(t) = if (NE Tt = i / " (o) dretnt
£ m ILT T ~ J, 3

when the series in the right-hand side converges uniformly.

Proof. (i) and (ii) are obvious.

(iii). From

~wf(0) - f(T)
pn—1

if'=1f

and (i) it follows

. . _pf(0) - f(T) 1
m]—"m{lf } = fm{f} = 1 /\m

(iv) follows immediately from the representation

Pm{f} = fm{f}em(t)

of the m-th Riesz projector (see Section 4).
(v) follows from the uniqueness theorem proven in [11], pp. 255-271.

Remark 3. Formula (iii) corresponds to the basic formula (15) and can be
used in almost the same way.

2
5. OPERATIONAL CALCULUS FOR Dl;’2 WITH BOUNDARY VALUE

CONDITIONS U(0) =0, U(A) =0

Following the multipliers quotients approach in 2], a survey of the operational

calculus for the simplest boundary value problem for the second order differential
d? :
operator D = e in C[0,a] will be made. For more details one may consult our
recent paper [10].
The starting point of this operational calculus is the operator L_y2. For f €

C[0,a] the function y = L_j2f is defined as the solution of the boundary value

problem
y" + Ny = f(x),
y(0) = y(a) = 0. (21)

It is easy to obtain the explicit expression

sin Ax

Asin Aa

Lof@ = [ sinde-05@de - S350 [Csmda-or@de (2
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The operation

1 [/t
Fro@ = 5 [ [ | fe+a-ngman 23)

§
= [ f0&==z—nDg(nl)sgn (€ - - Wr)dn} d

is a convolution of L_,2 such that

asin Az

sin A\a

L@ = {55 1) (24)

The special case A = 0 is used as the basic operator of the corresponding
operational calculus. Denoting L = Lg, we have

Lf(z) = {z}* f(=), (25)

i.e. L may be considered as the convolution operator {z}*. For simplicity we will
write L = {z}. Also, if f € C[0,a], then by {f} we will denote the convolution
multiplier operator {f}x*.

Let M. be the ring of the multipliers of the convolution algebra (C[0, T}, *)
and let by N, we denote the multiplicative set of the non-divisors of 0 in M_,\{0}.

Further we consider the ring of the multipliers quotients R, = N ! M, of the
form P/Q with P € M., Q € N,.

Basic is the role of the multipliers quotient

1

where by 1 the identity operator in M, is denoted.
The basic formula of the operational calculus under development can be ob-
tained from the identity

Lf" = f = (1= %) £(0) + = f(a).

Writing it as an identity of multipliers operators, it takes the form

w_ ¢ f[1_ T 1
Li"=1-{1-2} /0 + - f()L. (27)
Multiplying by S, we obtain
jr =51 -5{1-2}(0) - > (a), (28)

1
where the numbers f(0) and , f(a) are to be considered as “numerical operators”,
i.e. as numerical multipliers in (C[0,a], *). Using (28), we can find that

1 ={asin)\az} (29)

S+ A2 sin \a
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nmw

for /\96——— n € N.
Pmof It is casy to see that

1
g b
Indeed, if y == L_\2f, then from (28) it follows Sy = = f — A?y. Now the

assertion follows from (24).
The direct approach can be duplicated by the finite sine-transform (see [12]).
We will use a variant of the sine-transform having (23) as its convolution. It
is slightly different from the finite Fourier sine-transform introduced by Churchill
in [13], p. 349.

Definition 1. The transform F3 : C[0,a] — C" is defined by

FoAly= (30)

n=12....

Theorem 5. The basic properties of the sine-transform are:

)

() Falay= - (=)

a \?
(i Fagify =~ (=) sy
i oty = - (%) Rt} - < 1f@) - (1) £(O)
(iv) Folf =gy = FAS YAl

and the inversion formula

(v) f(z) = 2 Z( 1) nf’{f}smﬂ'l

n=1
holds when the right-hand side series converges uniformly.

Proof. (i) and (ii) can easily be obtained directly. (iii) follows from (27) using
(i) and (ii):

FAL"Y = FAS) - FOF1 - 2} + f@F ()

or

e

(L) F =R - SO+ @

nmw

(n )



since

(~1)"a
(nm)?

: T
Fl - =)=
-2y
(1v) It can easily be verified that

. nT . N (=1)"a . n=m
Sin —x ) % [sin —z ) = sin —u.

a a 2nmw a
Since - .
Folf}sin—u = (sin ——:1:)  f,
a a
then
J:,i{f * y} sin “('Tﬂ;lt — (sin ?1‘) ¥(fxg)= T {f} (Sin '7—:1:1: * g)

ni

= Fo{f}F:{g}sin —z.
(v} See [12], Ch. 3.

6. A TWO-VARIATE OPERATIONAL CALCULUS FOR THE HEAT
EQUATION WITH DEZIN'S BOUNDARY VALUE CONDITION

Our first aln is to develop an operational approach to the following non-local
boundary value problem for the heat equation in the rectangle A = [0,a] x [0, 7T
Uy = Uy, + Flx,t), (x,t) € A,
pu(e,0) — u(@,T) = f(z), 0<z<a, (31)
w(0,8) = @(t), u(a,t) =4(t), 0<t<T,
where g # 1 1s a real parameter.
To this end we need a two-variate operational calculus for functions u(z,t) of
a space variable and a time variable. We will follow the pattern from {10].
We have to find an inner operation for functions f € C'(A), which is a convo-
lution both for the operator
T

4

: 1 .

Hu(z,t)} = / u(z, 7)dr + — ul(z,7)dr (32)
0 n=1/

and the operator
L{u(z.t)} = / (@ - Eu(e, by de - / (a — E)ul€, 1) de.
0 @ Jo

According to (23) the operation

x 1 a .§
(fxg)(z) = ~ 7 , / flE+2—n)gln)dny (33)
) /_ fUE = = ni)g(nDsen (€ = = = m)n) dﬂ] dg
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is a convolution for L in C([0,a]).
Now we are to combine (33) with (4) in order to obtain a two-variate convolu-
tion, such that ! and L to be multipliers of the corresponding convolution algebra.

Theorem 6. Let u,v € C{A). Then the operation

(z,t)

1 a t 13 »
(f * 9)($,t)=“m/0 [/O ur/ fla+&~nt—7)g(n,7)dndr
T €
: —n,T+t— ,7) dnd 34
+[ /Tf(x+€ n, T +t—7)g(n,7)dndr (34)

t £
- /0 p | flE—ax—n|,t—"7)g(|n|,7)sgn [(€ ~ = — n)n]dndr

—x

T rg
- / / flE =z =, T+t —7)g(In|, 7)sgn [(§ — = — )] dndT] dé
t -
is a bilinear, commutative and associative operation in C(A) such that the operators

Hfy={1}+f

and

L{f}={z} =/
L. . ‘ {x,t)
are multipliers of the convolution algebra (C(A), * )

For a proof one can follow the lines of the corresponding proof in {10]. Since
the bilinearity and the commutativity are almost obvious, only the associativity
needs to be proved. We verify it for product functions F(z,t) = f(z)p(t) and
G(x.t) = g(z)¥(t) using the identity

F 5 @) t) = (f § 9)@)(@ $0)(8),

followed by an approximation argument.
Let us denote by R the multipliers quotient ring of the convolution algebra

(C (A), (x’ff) ) In R the one-variate identity

(0} = sttt - 240D
takes the form
{811((91;,t)} = s{u(e, 1)} - [uu(x,(zt):;t(a:,T) ) (35)

where by [} it is denoted that the expression in the brackets is a numerical operator
with respect to ¢, i.e. [] = {-} .
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The corresponding identity with respect to = has the same form as in (10]:

& u «
5 = Su—-S {1 - g} (u(0,t)], - Eu(a,t)]r , (36)

1 : . . .
where S = I and [], is to be considered as a numerical multiplier with respect to

, t
Z, l.e. []L - {} X,
For the proof of the uniqueness theorem in the next section we need to char-
. .. (z.t) -
acterize the divisors of 0 of (C (A), =* ) This is done by means of the following

two-variate finite integral transformation.

Definition 2. For v € C(A) let

S (_l)ny' ot “AmT iy DT
f,,l,,z{u}—m/o/o u(é, 7)e smyﬁdfdr

be a two-variate finite integral transform corresponding to the two-variate convo-
lution (34).

Theorem 7. The following properties of F,, , are satisfied:

) a \?2

(l) }-m.n{Lu} - = (E) fm,n{u}a

(ii) fm.n{lu} = )\m}—m,n{u}a

cen Amf ‘ ﬂ . Amt . E (1:,{-)
(iii) Fmn{ule™" sin . T = {e sin " 9:} * U,
(iv) fm,n{u (I’;‘t) ’U} = fm,n{u}fm,n{v},

9

(v) Fon {ixu} = — (n_W)~ Fon{u} — %f,n{u(a, t) — (—=1)"u(0,t)},

,. ou) s J pu(z,0) —u(z,T)
(vi) fm.n{a}—/\mfm,n{u} fn{ 1 }

Proof. Follows immediately from Theorems 4 and 5.

Lemma 1. A4 function v € C(A) is a divisor of 0 iff for some m € Z, n € N
we have Fy, n{u} = 0.
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Proof. Indeed, let for some m € Z, n € N we have F,,, ,{u} = 0. Then

t
{e'\"“'sin } % ){u(r,t)}

l)nﬂ // Am T
— ._..___ m —_— 1 l YL a—
e l & 1)e” sin = g(S(T et sin —1 r = 0.

Hence u is a divisor of 0.
. . (=,t) | (x,t)
Let us now conversely assume that u is a divisor of 0 of #* , i.e. that u *

v = 0 for some function v € C(4A) , v # 0. If we assume that F,, ,{u} # 0 for all
m € Z and n € N, then

(x.t) () . nm (—1)"u
(u = ’L’) * {8)‘"“5111 —a—l.} = (u__%;r‘]:m,n{u}fm,-n-{t"} =0,

whence F,, p{v} = 0V¥m € Z, ¥n € N. This is equivalent to
(sm %Er) % [e’\’“ * v(x, t)] = 0.

If we denote the functions in the brackets with Fy,(z,t), the last equality implies
that
Folx,t) =0, Ym € Z.

Fixing now z € [0,a], we obtain
etk y(x,t) = 0,
whence v(z,t) = 0 Vt € [0,T7], contrary to the assumptions.
Theorem 8. L —1 is a dz'visor of 0 of the multipliers ring of the convolution
thy .
algebra (C(A), “% ) ﬁ' —ln; € N.

Proof. 1f (L —1)M = 0 for some M # 0, then there exists a function v € C(A),
v # 0. such that Mv = u # 0 and (L —l)u = 0. The fact that u # 0 implies that
for some m € Z and n € N we have

fm,n{u} # 0.

According to (i) and (ii) of Theorem 6 we have

a2
fm,n{Lu - Iu} = [_ (;{7'1_') - m:| m. n{u} .
This is possible only if ‘
(i)' + Am =0.
nw
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1 : . . .
T(ln i+ 2mmi), this is only possible for m = 0, i.e. when

pivn== ()

Since A, =

for some n € N, whence the assertion follows. The converse is obvious.

7. GENERALIZED SOLUTIONS OF THE HEAT EQUATION
WITH DEZIN'S INITIAL CONDITION

The common notion of a generalized solution in the sense of distribution theory
is unpractical for boundary value problems. This is especially true for nonlocal
boundary value problems in finite domains.

In the case of the boundary value problem (31) it is very useful to introduce
the notion of a generalized solution in the framework of the algebraic analysis of
D. Przeworska-Rolevicz [14].

Let %' (A) be the space of functions that are twice continuously differentiable
with respect to x and continuously differentiable with respect to ¢. Let us assume
that (31) has a classical solution u € C*'(A). Applying the operator Ll to the
cquation

U = Uze + F(z,t),

we obtain

L{luy) = l(Lugy) + LIF (2, ).

From (16) we get
1

=1

lug = u — f(x)
and from (27) we have
x T
=u—(1=2) @)+ =¥(t).
Lie =u = (1= 2) olt) + Zy(0)

Hence

L lu(@,t) - ﬁ f(:r:)] = ue, 1) = (1= 2) olt) + S6(0)] + LiF (2,

or
1 x T
(L-lu= L) - (1 - 5) Lp(t) + ~U(t) + LUF (a, 1) (37)
Conversely, if a function u € C*1(A) satisfies (37), then it is a solution of (31).
3
Indeed, if we apply the differential operator 52301 to (37), we obtain
a 0
(})—t - 3:[!2) U = F(l’,t)
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and hence u(x,t) is a solution of the heat equation.

2

<

In order to verify that the initial conditions are satisfied, let us apply 502 only.
z2
We obtain
1
u—lugy = — 1f(:l:) + IF(z,t).
Applying to this equality the functional
{g(t)} = png(0) — 9(T), (38)

we get
V{u} = f(z)

i.e. the Dezin’s initial conditions since ¥{lg} = 0.

3}
In a similar way applying 3 to (37) we get

Luj —u=— (1 - 3) o) + %w(t) + LF(z,1).

Since (Lg)(x) satisfies the boundary conditions (Lg)(0) = (Lg)(a) = 0, then the
above equality for z = 0 and for z = a gives u(0,t) = ¢(¢) and ula, t) = P(t).
The above considerations justify the next definition.

Definition 3. If u € C(A) satisfies the integral relation (37), it is said to be
a generalized solution of the boundary value problem (31).

Lemma 2. If u € C(A) satisfies (37), then u(0,t) = ¢(t), u(a,t) = ¥(t) end
pu(z,0) —u(z,T) = f(x).
Proof. From (37) for x =0 we get

~lu(0,t) = —lp(t),

\xhence u(0,t) = ¢(t). In a similar way, substituting z = a in (37), we obtain
u(a,t) = ¥(t).
Applying the functional (38) to (37), we get

LU {u(e, 1)} = lTIij(x)w{u

(since LY, = ¥,L) or

L{pu(z,0) — w(z,T)} = Lf(z).

9

-~

86:1:2 to both sides of

Now Dezin’s initial condition follows applying the operator
the above equality.
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8. APPLICATION TO THE HEAT EQUATION

The two-variate operational calculus developed above allows to algebraize com-
pletely the boundary value problem (31). We use formulas (35) and (36) to obtain

su — Lﬁ(—f)i-‘ = Su—S5{1- =} p(t)], - é[d-'(t)]m + {F(z,1)}.

The solution u exists as an element of the ring R, i.e. as a multipliers quotient and
it can be represented in the algebraic form

Flz. ’) |1 S z ;
v {s(fé)} Tl —[’2()2]— S) s-S§ {1 B 2} Bl - —1 Sal[w(tm' (39)

It is valid provided s — S is a non-divisor of 0 in R.

Theorem 9 (for uniqueness). The element s — S of R is a non-divisor of 0

a (1 1
provided 2= = ¢ N.
VT pu
Proof. Let us assume the contrary. As in [10] it is easy to show that this

assumption reduces to the existence of a non-zero function u € C'(A) such that
(L —Du=0.

Then the proof follows from Theorem 7.

1. 1
Now the formal solution (39) exists provided % Tln: Z N. In order to
1

interpret it, we introduce
1 Ll

Q=sS(s—5) Ts-S

Since Ll = {z}, then Q can be interpreted as a solution to the boundary value
problem (31) with F(z,t) = z and f(z) =0, ¢(t) =0, ¥(t) = 0.

If such a solution u(z,t) exists, we can find it by means of the finite sine
transform. If u(x,t) is the solution, then

s s 0%u s
fn{ut} = fn {‘5{2—} +fn{x}'

Using (i) and (iii) of Theorem 5 and the boundary conditions for
wun(t) = Fp{u(z, t)},
we obtain the equations
dup, n\ 2 a \?2
dat (7;7) un(?) (TTE) ’ (40)
pen(0) = uny (T) =0
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for n = 1.2.... For the functions u,(t) we find the explicit expressions

(H - 1)(1,4 _ 6_(111)“: B I '
(nm)*(p — e“(?)"")- (nr)h

un(t) =

Taking into account the inversion formula (v) in Theorem 5, we now define

2T | 3
Oz, t) = % Z(—l)"'nun(t) sin ’—?1 = -2 (E)

n=1 T n=1 n
L~ 1)a® — -1)" w2 nm
+ 2“ 3) ( )” .2 e (%) tgin "2y (41)
T n=1 7];3(“» - 6—(7) T) a
1 ¢ —1 3 = -1 n nE 2 2
= —=(z® - a’z) + 2(# 3)a (=) w2 e~ (%) tsin i
6 w — n_}(u___ e—(T) T) (1)

It is a matter of a simple verification that Q(x, t) satisfies the integral relation
L — 1 = Li{x}. (42)

Theorem 10. Let F(z,t) € C*'(A) and let it satisfy the zero initial-boundary
conditions of (31). Then the problemn (31) has a generalized solution u(x,t), which
has the Duhamel type representation

(x,t) O°F
*

dx2ot (43)

u(z,t) =0

Proof. In order to prove that u is a generalized solution of (31), we are to show
that it satisfies the integral relation

(L = lyu = LIF.
From the assumptions made on f we have

O*F

Lt 0z20t

Then

7 92 (’E,t) 63F ('xJ') 63F
=) = “lu — Ll*u = - { |
Li(l = Du= L7lu IFu=1L (Q x Ll 3x28t> [ (Q * LI@:I:Q(%)

0% e = a1 Y F

But LOQ — 19 = Li{z} (see (42)) and then

Li(l - = Li{z} % F.
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Since {x} %' F = LIF. then

LIL - l)u = L*I*F.

Now “canceling” the term Ll, we get Lu — lu = LIF.

From (43} it follows that u(x,t) is continuous on A and it satisfies the initial-
boundary value conditions u(0,#) = u(a,t) = 0 and pu(z,0)—u{z,T) = 0 according
to Lemma 2.

Theorem 11. Let f € C*0,a] and let f(0) = f'(0) = f(a) = f"(a) = 0.
Then the function v € C*YA) defined by

1

vie, t) = E—

flx) (44)

(2% @) -
is a generalized solution of the equation vy = vy, with v(0,t) = v(a,t) = 0,
pe(e,0) —v(z, T) = f(z).

Proof. 1t is not difficult to obtain this Duhamel-type representation from

— L [f(@)]s
w—1s-8"

but it is easier to verify directly that (44) satisfies the equation (L —/ljv = Lf.
Theorem 12. Let v € C?[0.T] satisfy p(0) —(T) = 0 and ' (0) =" (T) =
0. Then the function w € C*'(A), given by

1 ¢ € .
wiz,t) = —=Qxy" + =u(t), (45)
a A

is a generalized solution of the equation wy = w,, with w(0,t) =0, w(a,t) = ¥(t)
and pw(z,0) —w(z,T) = 0.

Proof. We have to show that w satisfies the integral relation
L
(L —lw = ——arl:w(t).

This is a matter of simple calculations.

Remark 4. The case F = 0, ©(t) = 0, f(x) = 0 is not essentially different
from the just considered case. Although the corresponding expression

=S{1 -2} [p(t)],

s—S
looks more involved than the expression
—(¥(t)].

(- 1)(s - S)
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in the previous case, it can be simplified by introducing the new independent vari-
able z =a —2.

Remark 5. In order the generalized solution of problem (31) to be a classical
solution, only a slight increase of the smoothness assumptions on F, ¢, ¥ and f
is necessary. It is sufficient to require the corresponding derivatives of the highest
order to be not only continuous, but absolutely continuous.
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