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This article is concerned with the problem of a parameter estimation of the constant
drift and diffusion coefficients: unknown vector A and unknown positive definite matrix
B, respectively, of a k-dimensional diffusion type process, when the observations at the
moment of random point process are given. We compute the means and variances
of the maximum likelihood estimators and establish their asymptotic properties. The
unbiasedness, the strong consistency and the asymptotical efficiency of the estimation
for A are proved. The estimator of B is unbiased and consistent and the variance of this
estimator does not depend on the distribution of the random moments of observations.
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1. INTRODUCTION

In this article we consider the diffusion process X; = (X}, X?,..., X7, t >0,
defined by the stochastic differential equation

dX; = Adt + BY?dw,, t>0, Xo=0, (1)
where 4 = (a!,a?,...,a%)T and

by b2 ... bk
B=1{...
b b2 .. brk
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are unknown constant vector and positive definite symmetric matrix, respectively,
and Wy = (W W2, .., WK is a standard Wiener process with a mean 0 and a
variance Iy.

The solution of the differential equation (1) exists in a strong sense, it is unique
and 1s represented by the process

Xi = At+ BiW,, t>0. (2)

More information about this problem can be found in [1].

The maximum likelihood estimation problem for the model (1), when we ob-
serve the process Xy, ¢t > 0, continuously in the interval [0, T, is solved in [2]. In
the case when we have at disposal the discrete observations at equidistant points,
many close to this one problems can be found in the monography [3]. At first,
the random sampling scheme has been used by J. Beutler in [4]. Recently, many
authors (see [5] and [6]) consider continuous diffusion processes when the observa-
tions are provided in discrete moments belonging to the interval [0,7]. In [7] A.
Le Breton has solved the estimation problem for the model (1) when the points of
observations are determinant.

Usually, the maximum of the distance between the points of observations tends
to zero, while their number tends to infinity.

Our conditions are more natural. Let us denote the observations Xy, ..., X¢,,
Xe, = (X{, X2, ..., X)T. The moments ty, ..., tx are the first N points of an
arbitrary pomt process with independent identically distributed increments. The
process {t;},i =1,..., N, is independent of the process X;, ¢ > 0, and we compute
E(F(X:)) = E((Ex(F(X¢))). The problem is to find the maximum likelihood
estimators of the unknown constant vector A and the matrix B and to establish
their properties. In the one-dimensional case this problem was solved in [8].

Let us denote X; = X;,, AX; =X, - X;-1, Ay =t —t;_1,i=1,...,N. For
simplicity we denote B = B/2,

2. MAXIMUM LIKELIHOOD ESTIMATION

Using the maximum likelihood method, we can prove the following natural
results.

Theorem 1. If N > 2, the statistic

- X
Ay === 3)
Tt
is a mazimum likelthood estimator for an unknown vector A.
We prove this theorem using the standart maximum likelihood procedure.
Theorem 2. If N > k, the statistic
AX;AXT XNX;{,
4
N N Z{ tn 4)
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is a maximum likelihood estimator for an unknown matrix B, when A # 0.
For A = 0 the maximum likelthood estimator is

N
e 1 A.XFIA‘X—;I‘
Bv=n 2 =4

1

Our approach is different from the ones used in the proofs of similar proposi-
tions. (For example, see [9, p. 75].) Our proof is based on the following lemma.

Lemma 1. Lety; = (y!,...,y¥)T, i = 1,...,N, be k-dimensional vectors

Af

such that B = 3. yiyl' is a non-singular matriz. Then:
=1

a) the matriz B is symmetric and positive definite;

N N -1
m0=2ﬁ(zwﬁ) vi=k.
1=1 1=1

Let us note that for the estimation of one of the parameters (A or B) it is not
necessary to know the other one.
The estimator By is not unbiased. Therefore we prefer to use the estimator

) X {AXiAX,T_XNXﬁ} 5)

Aj tn

The proofs of these theorems can be found in [12].
Our purpose here is to establish the properties of the maximum likelihood
estimators, which are given in Theorems 1 and 2.

3. PROPERTIES OF THE MAXIMUM LIKELIHOOD ESTIMATORS

By arbitrary distribution of the process ti, ..., tx and natural conditions for
its moments we can compute the means and variances of the considered estimators
and to obtain their asymptotic properties.

Let lr?%xNAi do not tend to 0 when N — oo, and £y — oo when N — oc.

Theorem 3. The estimator given by (5) is unbiased, strongly consistent and
asymptotically effective for the unknown vector A if the condition

> E(ty’) <o (6)

is satisfied.

Proof. We compute

- < 4Y At
EANzE(YN) = E,Ex ( N) =B~ _ 4
tN N
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Hence, Ax is an unbiased estimator.
The variance of this estimation is

/ _ 7 .- ES1 7 12 T
EAydL = B ( XnXT ) _ E(Aty + BWy)(Atn + BWx)
N ta
— _14T+B EHNWN :AAT-}.BEL.
N tn

1 T .
As E (t—w) — 0 when N — oc, the considered statistic Ay is consistent.
N

A sufficient condition for the strong consistency of Ay is

o

ZP(IAN—A!>E)<OO.

N=2

. 1/4
Let {[All4 = (E > a‘}) be the norm of the random vector 4 and A = || Bj|
1=1

be the maximum eigenvalue and the norm of the positive definite matrix B. Then
using Markov’s inequality, we obtain

S| N~4|>E)<_ZE|4N..4\ <Ly B

N=2 N=2 N=2

1 & Wi\t 3k 1
S|P B S ey () - S e
N=2 N=2 i=1 N=2
From condition (6) it follows that the estimator (3) is strongly consistent.
The Fisher information matrix for the estimator Ay is

o . dP 8 . dP
I; (l,m)=Eq4 ({ 5 df;’B(x)}{ 5o I df;'B(z)}),

where )\ is the Lebesque measure in R*.
Let cji be the (j,1)-th element of the matrix B~" and b;; be the (i,j)-th
element of the matrix B. We compute the first factor of I; (I, m):

r
N

k
;al In dz’j\'B (z) = 5;1 (4, B) ;;q, (amz A XJ)
We use that .
AX] =alAj+ ) b AW
and -
o N k s
571(4, B) ;;;bjnc,jm
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Then
k

k kook
I; (lm)=E Z Y oSONTN b AW by, AW
J=1n p=1g¢=1

1=1 =1

For n # ¢ the mathematical expectation is equal to zero and

EZ (AW = ZEA = Ety,

=1

so the information matrix is

I.lt (I,m) Ezzzzb];zcljpntp pn(A” n)

=1 j=1 p=1 n=1

k

Ak kK
= Fty z Z Z bj,lcljcmpbpn = Ftyn Z Z ijClemp

j=1p=1n=1 p=1j=1

k
= Ety Z Dlpcmp = Etncim.
p=1
Here Bj, denotes the (jp)-th element of the matrix B and Dy, denotes the (I{p)-th
element of the diagonal matrix B~ !B = I}..
In this way we obtained that the information matrix is B~!Ety. Hence

-1
off Ay ~ (BE tiB-lEtN) -1
N

when N — oo and the estimator Ay is asymptotically effective.

. B
The distribution of Ay (for a fixed tx) is normal with parameters 4 and .
N

i.e. the vector 1
has a k-dimensional standard normal distribution.

Note. The sufficient conditions for strong consistency of the estimator can be
written in terms of statistical moments of A;.

For the estimator By we can establish the following properties:

Theorem 4. The statistic (5) from Theorem 2 is unbiased and consistent
estimation for the unknown matriz B and the variance of this estimation is
k+1

E(By — B)? = N—_—I-Bz. (7)

To prove these properties, we calculate the moments of the estimator. We need
the next lemmas.
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Lemma 2. For every integer k > 2 the identity

N N
E E min(iy, ..., ) E it
i1 =1 =1 i=1
holds, where iy, is, ..., i) are natural numbers between 1 and N .

Proof. We consider the sum

N N
Z...Zmin(il,...,ik),

=1 Q=1
where £ > 2. The minimum can accept all integer values from 1 to N. The
number of all possible values of the k-dimensional variable (iy,io,...,4) is N¥.
The number 1 does not appear in (N - 1)* cases. For the rest N*¥ — (N —1)* cases,
miniy,...,i;) = 1. Thus min(iy,..., i) = 2 exactly (N - 1)¥ — (N — 2)* times,
... min(%y,...,1;) = N only one time.

Therefore

N N

Y min(iy,... i) =Y (N =i+ D = (i - 1)¥
1, tp=1 i=1

N
= NF =0+ + L[N - (W= 1)f] = ) ik,

1=1

If £k =2, we obtain

mez]) Z 2 ———-——N(N+1)

i,7==1
Some characteristics of the considered processes will be usefull for our proofs.
Let us denote

. T
AI": == H’.’i i VV&'-—I = (I’thl - I/thi-l ? V["'t?.' - "I;t%-l youey 1’1’:tl§ - 1'1/'1,:“— 1) ?

A; =t; — ti—y and I is the identity matrix of dimension k. The arbitrary reneval
point process t;, i = 1,..., N, is independent of the process Xj.

Lemma 3. For the moments of the Wiener process the following equalities
are satisfied:

EAW,AWT = EA; I, E (AW, AWT) = (k + 2) EA? I,
EAW,AW] =0, i#j, E(AW:AW]) = BAYL, i<},
EAW;AWTAW; =0, EAW-W,'{; = EA; Iy,
EWNWE = Ety I, EZZ =N -1

t=1 j7==1
J#i
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Proof. We will prove only the first two equalities.
We use the facts that B and By are symmetric matrices, the increments of
the Wiener process are independent and their odd moments are equal to zero.

EAW!AW™ =0, 1 #m, EQW}?=EA;, I,m=1,... k.
Then it holds:
‘ E(AW!)?  EBE(AW!AW?) ... E(AW!AW})
EAW; AW =
E(AWFAW}) E(AWFAW?) - E(AW})?

A, 0 ... 0
- =EA.¢'Ik.
0 0 ... A

Let dj,, where I,m = 1,2,...,k, be the (I,m)-th element of the matrix
E(AW; A L‘I--",-T )2. Then

k
dim = E Z (AW™) AW ‘.l AW™ + EA I,Vil (AW™ )3

n=1
n#l,m

+ E(AWH?AW™ + E (AW)H™.
Sodp, =0ifl#m, I,m=1,...,k, and

k k
di=E Y (AW (AW))? + E(AW))' = E Y (AW (AW]) + E(Aw])’
n=1 n=1

n#l n#l
= (k- 1)EA? + 3EA? = (k + 2)EA}.
Hence
E(AW,AWTD)? = (k+2)EA? I, Yi=1,...,N,
EAW,WE = EAW?I, = EA L,

N N
EWNWE =) EAWAW[ I, = Y EAI = Etylj.

i=1 =1

Proof of Theorem 4. It is easy to establish that the estimator By is unbi-
ased:

1 N A tn
EBy = — AATEA, + BE——') — AATty - BE-X | = B.
N -1 — A N
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After substituting AX; = AA; + FAW,-_, Xy = Aty + BWy, we find:

2

N -
E (Bf;, - Bﬂ) =E(N-1)7" ((Z AX,—AX;’"A;’)

i=1

IN"
-2 Z AXGAXT Xn X TNty + (XNX;(:)Zt;ﬁ) ~ B2

1=1

N
= (V=177 Y B((447)" 2ia,+ BAWAWT B 44TA;A,™
i, 7=1

+ AATBAW,AWT B’ A;A;71 + BAW,ABAW, A

+ AAWT B BAW; AT + BAW,ATAAWTB' + AAWI B  AAWT B’

+ BAWAWTB BAW,AWTB' A7 AT - 2 (AATBWNWEB' Asty™
+ (447)° Aty + BAWAWT B AATty A~ + AAW, ATAWS B

+ AAW! BT AW BT + AAW] BT BWn AT + BAW; ATBWy AT
+BAWAWI B BWyWEB' AT ) + BWNWEB BWyWEB ty~
+ (AATV 23, + BWyWEB' AAT + AATBWNWIB' + AWSB' AWTB'
+ AWIB BWT Aty + BWNAATWEB' + BWyATBWy AT) .

Using the formulas from Lemma 3, we calculate that a part of similar terms
are equal to zero. For example:

(Z BB 4ATA--QZ‘BB AATty + BB AATty

i,j=1

+ Z AATBA,; -22 AATBWNWE B Aity +A,4TFETtN)

1,7=1 1=1
= BAATE (Nty — 2Ntn +ty + Nty — 2ty +ty) = 0.

Deleting these terms, we get:

F (B3 - B%)

N N
=(N-1)E (}: B AW,AWTB A ST B AW, AW B A,

j=1
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N
Z AW, AW AW AW A2

N N N
Z AW,AWIBY aw; ST AW B Aty

1=1 (=1

B? (k + 1) t3 .
g N_(N_l)sz)
N

N s &l —! N — — a4
—(N-1)7 (2 ‘B EAWAWTB A S B EAW,AWTB A,
i=1 j:l

[\I
+ > BPEAW AW AW, AWTA2

i=1

N N N
- E (Z BAW,AWTB S aw; Y awB' A} t,;l)

=1 j=1 {=1

B’ (k+1)- (N 1)23)

N
=(N-1)"" (32 (N = N)+ N(k+2)B* - 2(k + 2)B* Z Aty

=1

N N
—2B*Y "N Ajty' 4+ B* = (N - 1)° 32).
=1 j=1
J#i
The means of some terms we calculate by the following reasoning. Let us
denote

N N N
F(i,j))) = E (Z BAW,AWTIBY aw; Y AW,FTAJN_I) :
i=1 i=1 =1

Then F(i,,0) = 0 in all cases when 7 # j # 1 # 7.
If j = [, we obtain

N N e T
. AW, AWT AW AW
o L 2 2 1 J 7 .
F(i,j,j) =B ZZ _E<———Ai )E(———tN )+F(z,z,z)
i=1 j=1,j#1
_Bzzh( )I;, Z E( ) B*(N — 1) + F(i,i,1),

J=1,j#1
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where

Z AW, AWT AW, AWT . Al A2
B E 1 kA ? 1 — 2 k 2 i
o ( Aity ) pR )EE(thi)

= B%(k +2).

Hence

N N
E (Z BAWAWTBY AW, > AW,FFAitN‘l) = B*(N +k+1).

i=1 j=1 i=1

z

In the same way we calculate the means of all terms.

Finally, we obtain
k+1

N -1

Hence BN is the consistent estimator for the unknown matrix B.
The estimator By can be represented as follows:

B?.

E(B% - B?) =

N
By =(N-1)"" (}: (AX; — AA) (AX; — AA)T AT

—(Xn — Atn) (XN — AtN)T ty' | = a; Y;Y T,
N J

i,j=1

where ,
Yi = (Xi - AA) ATV ~ N (0,B),

N ! N -
Q= 1- A,, (Z Aj) y Qi = \/A,'Aj (Z Aj) .
i=1 j=1

The random variables Y; and Y; are independent and

N N
Zaz—,;=N—1, ZaszN—l.
=1

i,j=1

There exists an orthogonal transformation ¥ = C'Z such that

N
By=(N-1)"Yz2z],

which is k-dimensional Wishard distribution with N — 1 degrees of freedom.

4. COMMENTS

It is interesting to underline the next facts.



At first. the estimator AN depends only on the last observation, the same
as the continuous time sampling, and in the case when determined moments of
observation are used. It is interesting to compare the estimators given by different
sampling schemes. For example, the point process t;,7 = 1,..., N, can be Poisson’s,
geometric, uniform. Results of this kind can be found in [10] and [11].

The second fact is that the variance of By is independent of the distribution
of the random point process t, ta, ..., ty, ... and tends to zero as O(N~!) by
N — oc. The proved formula (7) for k£ = 1 is given in (8], i.e. the obtained results
generalize the one-dimensional case.

The third fact is that the used sampling scheme is natural. We add the
(N + 1)-th observation to the first N observations and do not need new N + 1
observations. We established good properties of the estimations without the con-

dition max, A; = 0 when N — o0, as in the other sampling schemes.
_z__
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