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The problem of finding necessary and sufficient conditions for a given family
of partially recursive (p.r.) functions (recursively enumerable (r.e.) sets) to have a
universal p.r. function (r.e. set) is one of the interesting problems in the Recursion
theory. For example, if we want to find a recursive model for a given recursively
enumerable theory in some cases, we have to know if a given family of recursive
functions has a universal recursive function or not. It is well-known that the family
of all p.r. functions (r.e. sets) has a universal p.r. function (r.e. set), while the
family of all recursive functions (totally defined on some N™) has no universal
recursive function. On the other hand, in the works {2, 3, 5] a related problem
is considered. Some necessary and some sufficient conditions for the family of all
recursive functions and some finite initial functions to have a universal r.e. set are
obtained.

In [1, 4] Ishmuhametov and Selivanov have obtained sufficient conditions for a
special class of families of r.e. sets. In [6] the author has characterized the families
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of finite sets which admit a universal recursively enumerable set. But until now
such a necessary and sufficient condition is not found for arbitrary families of r.e.
sets (p.r. functions).

In this paper we notice that the characterization of the families of finite func-
tions which admit a universal partially recursive function is the same (in some
sense) as in the case of families of finite sets of natural numbers [6] and we give
necessary and sufficient conditions for a given family of recursive functions to have
a universal recursive function. We want to stress the analogy between both cases.

Here we use N to denote the set of all natural numbers {0,1,2,...} and N, to
denote the initial segment {k | k € N& k < n} of the set N. We suppose that there
is some fixed effective coding (.,.) of the pairs of natural numbers and Az.(z)g,
Ax.(z); are such recursive functions that ({(z¢,z1))o = xo and ((xo,21))) = 1.
If f is a partial function, we use Dom(f) to denote the domain, and Ran(f) to
denote the range of values of the function f. In the case when Dom(f) C N* and
Ran(f) € N, we shall write f : N¥ —e» N, and if Dom(f) = N* and Ran(f) C N,
we shall write f : N¥ — N. For the sake of simplicity, we use mainly unary functions
defined on a subset of N. If f and g are functions, we say that f is a subfunction
of ¢ (and write f C g) iff Ya(z € Dom(f) = = € Dom(g)& f(z) = g(x)). We
say in such a case that g is an extension of the function f, as well. Denote by 6,
the finite function with cannonical index v. For example, if € is such a function

that Dom(#) is finite and Dom(f) = {xy,..., @}, 1 < ... < zi, then we can
. : z] af(xy) g af(xg) . . .
consider v=pfp? 3" ~.pp "L Here po, pr, - . - is the increasing sequence

of all prime numbers. If Dom(6#) = Nj, for some natural k, we say that 6 is defined
on an initial segment. By . we denote the e-th partially recursive function in the
standard enumeration of the partially recursive functions.

Let ¥ : N? —e» N and g be a family of partial functions defined on N. The func-
tion ¥ is said to be universal for the family § iff for any n the function Az. ¥ (n, z)
is in the family §, and, conversely, for any function f € § there exists such n that
[ = e.¥(n,z). I[f¥: N? — N, then ¥,, denotes the unary function Az.¥(n,z).

It is well-known [cf. 7, p. 38] that if ¥ : N> — N is a recursive function
which is universal for the family JF, then there exists a recursive function
f: N? = N such that for all n 8¢, 0y C f(n,1),... and lism Of(n.s)(x) = ¥(n,z),

i.e. VaVz3seVs > so(0f(n,s)(x) = ¥(n,x)).
The following theorems and their proofs are analogous to the ones in [6].

Theorem 1. Let § be a nonempty family of finite fuctions defined on N.
Then the family § has a universal partial recursive function iff the following three
conditions hold:

(i) The set V = {v | 3f(f € F& b, C f)} is recursively enumerable;

(ii) The set I = {v |6, € F} is £3 (in the arithmetical hierarchy);

(iii) There exists such a partial recursive function h that

V C Dom(h) and Yv(v €V = 0, C v € §)-

Theorem 2. Let § be a nonempty family of finite functions defined on N
such that for every f € § at most finitely many functions g ewist in § such that
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[ C g. Then the family has a universal partial recursive function iff the following
two conditions hold:

(i) The set V' = {v | 3f(f € F& 8O, C f} is recursively enumerable;

(ii) The set I = {v |0, € F} is in the class 9.

Theorem 3. Let § be a nonempty family of finite functions defined on N such
that the set I = {v | 0, € F} is in the class I1Y. Then the family has a universal
partial recursive function iff the following two conditions hold:

(i) The set V = {v | 3f(f € §& 8, C f)} is recursively enumerable;

(i1) There exists a partial recursive function h of two variables such that the
following three conditions hold:

(a) Vv(v € V = An.h(v,n) is totally defined);
(b) Vv € \--’an‘v’nz(nl <ny =0, C 0!1.(1."711) C Oh(v,ng));
(¢) Ve € VIn(lpvn) € F).

Now we shall consider the case of families with recursive functions.

Theorem 4. Let § be a nonempty family of unary recursive functions. Then
the family § has a universal recursive function iff the following two conditions hold:
(i) The set V' = {v | 3f(f € §&b, C f)} is recursively enumerable;

(i1) There exist a family & such that § C & and a recursive function ¥, which
is universal for the family &, such that the following two conditions are satisfied:
a) the set I = {n | ¥, €} is £Y (in the arithmetical hierarchy);

b) there exists such a partial recursive function h that

V. C Domn(h) and Vv(v €V = 0, C ¥y, € §).

Proof. Suppose first that the family § has a universal recursive function 9.
Then the set

V= {’U I af(f € S&Gv C f)}
= {v | 3n3k3Iz, ... Sz (v = php 3 ppeat ey
&W(n,z) =Z0,(z) & ... &¥(n,zp) = 0,(zk))}
is recursively enumerable.
Fix &=F. It is obvious that the set I = {n | ¥,, € §} = N, so the condition a)
from (ii) is satisfied.

Let us define the function h as follows:
h(v) 2 pn[3k3z,y ... 3ok 3yy .. Bye(v = pg_p'f"l.g“ _..p}izk'syk
&V(n,z) =y & ... &¥(n,zr) =yl

It is clear that h is a p.r. function and satisfies b) from (ii).
Conversly, let the conditions (i) — (ii) hold and F be a unary recursive function
such that F(0) =1 and Ran(F) =V.
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In addition, let exist a family ® such that § C & and a recursive function ¥,
which is universal for the family &, and a : N> 5 N be a unary recursive function
such that for all n

ga(u,OJ g 90(11,1") (_: T g 0a(n,s) g Tty
and for all n and = lim Ga(n‘”(a;) = ¥(n,z). For the sake of simplicity, we suppose
! , )

that Dom(4(n.)) is an initial segment for all n and s. At the end, let G' be a
ternary total recursive function such that

n€l < JaVylG(n,z,y) = 0]

and h be a partial recursive function such that V' C Dom(h) and Yuo(v € V
= 0, C Tpe € 3).

We construct the so-called strong recursive sequence of finite functions by steps.
On step s for any (n,z) we construct a finite function 8, , s for a recursive
function ¢ and at the end we will fix

G)((nv IE), Z) = hgn eg(n,m,s) (Z)

Let us describe the construction of the recursive sequence of finite functions.

Step s = 0. Take g(n,z,s) = 1,1i.e. Oy, = 9.

Step s > 0. We consider two cases:

Case 1. Yyly <s < G(n,z,y) =0].

Take g(n,z,s) = F(tn.s), where t, . s < s is such that Dom(fp, . .))
is a maximal initial segment in the set {Dom(0p(),..., Dom(fps)} such that
O, .. 1S a subfunction of the function ¥,,.

Case 11. 3yly < s& G(n,z,y) # 0].

Take Oy(n 2.5) = Oain(g(nz.s0—1)}.s)> Where sg = us[G(n,z,s) # 0].

Thus the construction is completed.

Obviously, the construction is effective, so the function g is recursive.

First of all, we shall see that for all fixed n,  and 2 the limit lign Oyin.zs)(2)

exists and belongs to the family §. We consider two cases:

Case 1. Vy|G(n,z,y) = 0]. Then ¥,, € § and for all s g(n,z,s) = F(t,zs),
where t, z s is such that Dom(0p, . ,)) is a maximal initial segment in the set
{Dom(0F0)),--., Dom(Bps))} such that 8p(, . ) is a subfunction of the function
W,. Thus, 0y(n2.0) C g(n.z1y) € ... and the limit exists and it is ¥, (z), because
for all k there exists s such that {0,...,k} C Dom(8,(n.¢.s))-

Case 1I. 3y(G(n,z,y) # 0]. Let sq = us[G(n,z,s) # 0]. Then g(n,z,s) =
a(h(g(n,z,s0 — 1)),s) and for all s > s Oy(n.z,s) = Ja(h(g(n,z.50-1)),5)- Lherefore
the limit 11?1 Hg(n,z,s)(z) exists and it is \Ilh(g(n’x,s()_l))(z).

Now let f € . Then f = ¥,, for some n € I. Therefore a natural = exists
such that Yy[G(n,z,y) = 0]. It is clear now that f(z) = ¥,(z) = lign O4(n,z.5)(2)-

Define the function © as follows:

iméb,, .. (2), ifk=(n,z),
@(k,z):{ 0650, 2.6)(2) (n,)

fo(z), otherwise,
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where fg is a fixed element of the family F.

It is clear that © is total, recursive and universal for the family §.

The following examples show that none of the conditions (i) - (ii) can be
skipped.

Example 1. Let A be a nonrecursively enumerable set. Define the family of
recursive finctions by the following equality:

O, lf r=n,
falz) = { 1, otherwise.

Then let § = {f, | n € A}. It is easy to see that the family § does not have a
universal recursive function but § satisfies the condition (ii).

Example 2 a). Let § be the family of all total recursive unary functions. It is
well-known that the family § has not a universal recursive function. On the other
hand, it is obvious that the conditions (i) and a) from (ii) are fulfilled.

Example 2 b). Let A be the set of cannonical codes of finite sets such that A
is not in £9. Define the family & = {f,},en U {gv}ven of recursive functions by
the following equalities:

fo ={ ] S
, otherwise,

(z) = 1, ifz e E,,
§u\T) = 0, otherwise.

Let § = {f. | v € A}. It is easy to see that the family § has not a universal
recursive function, but § satisfies the conditions (i) and b) from (ii).

FExample 3. Let A be the set of cannonical codes of finite sets such that the
family § does not satisfy the condition (ii) from Theorem 1 (see the Example in
[6]). We define the family of recursive finctions by the following equality:

0, ifzekE,
fole) = { 1, otherwise.

Then let § = {f, | v € A}. It is not difficult to see that the family § has not a
universal recursive function, but § satisfies the conditions (i) and a) from (ii).

For the next theorem we need to recall a definition. The total function h is
said to be a boundary function for the family § iff for every finite subfunction 8 of
h there exists a function f € § such that ¢ is a subfunction of f. If § is a family of
unary recursive functions and a function h exists such that h is a boundary, we say
that § has a boundary function, otherwise we say that § does not have a boundary
function.

Theorem 5. Let § be a nonempty family of unary recursiwe functions which
has not a boundary function. Then the family § has a universal recursive function
iff the following two conditions hold:

(i) The set V = {v | 3f(f € F&0, C f)} is recursively enumerable;

(ii) There exist a family & such that § C & and a recursive function ¥, which is
o universal for the family &, and the set I = {n | ¥,, € F} is £ (in the arithmetical
hierarchy).
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Proof. The first part follows from Theorem 4. Let F be a unary recursive
function such that F(0) = 1 and Ran(F) = V. Let in addition a familv & exist such
that § C & and a recursive function W exists, which is a universal for the family &.
and « : N* = N be a unary recursive function such that for all n Baino) C Oan.1)
C - Cluns C--- (again for the sake of simplicity we consider that .D'om(HO(,,}SJ)
is an initial segment for all n and s), and for all n and = lim#6,(, , (z) = ¥(n,)
and G be a ternary total recursive function such that )

necl < JaVy|G(n,z,y) = 0].

We construct again a strong recursive sequence of finite functions by steps,
analogously to Theorem 4. Let us describe the construction.

Step s = 0. Take g(n,x,s) = 1,ie. Oy,2.5 = 9.

Step s > 0. We consider two cases:

Case I. Vy[y <s <= G(n,z,y) =0].

Take g(n,z,8) = F(tnzs), where t, . < s is such that Dom(é?”, ) s
the maximal initial segment in the set {Dom(0p()), ..., Dom(fp(s))} such that
O, . .y is a subfunction of the function ¥,,.

Case II. Jyly < s& G(n,z,y) # 0]. Take g(n,z,s) = Ft,as), where t, s is
such that Dom (0, . .)) Is an initial segment, 6y, » 51y C Op, , ) and Orit, . )
is the maximal element of the set {fpy,...,0Fr(s)}

Thus the construction is completed. It is effective, so the function g is recursive.

Analogously, we shall see that for all fixed n, 2 and z the limit lign Ogin.z,s)(2)

exists and belongs to the family . For fixed n, x and z we have to consider two
cases, but the first is the same as in Theorem 4, so we shall consider only the second
case.

Case 1. 3y[G(n,x,y) # 0]. From the construction it is clear that for all s
Oyinr.s-1) C Ogin,e.s)- Thercfore, the limit li;rn 84n,2.5)(2) exists. Let us suppose

that for some z € N the limit lim 8, ; 5)(z) is undefined. Then there exists sg such
T

that for all s > so Oy(ne.s) = Oy(n,r.50)- On the other hand, Or(ty...) CfETS for
some f. Since for all natural k a finite functions 8 C f exist such that Dom(f) =
Ny and 8 C f, then for all such 6 there exists s such that fp(5) = 6. It is clear now
that 6, . 5)(z) is defined for some s, which contradicts the supposition that the
limit 11m9 o(n.z,s)(2) is undefined. Therefore for all 2 € N the limit hm Og(n,z.5)(2)

is deﬁned
Assume now that lim#éy, , s) does not belong to the family §. Then accord-
! :

ing to the construction, natural numbers sy, sz, ... exist such that Oy s,) C
Oyinzwsy) C -ovand Ogna sy C© Yy for all i. This means that lim#f,, ., is a
: g(n, !

boundary function for the family §.
The proof that if f € §, then f = ¥, for some n € I, is the same as in

Theorem 4.
At the end, let the function © be defined as in Theorem 4:

Hm by .6 (2), ifk=(n,z)),
O(k,z) =1 °

fo(2), otherwise,
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where fp is a fixed element of the family §. The theorem is proved.
Let us note that if a family of (total) recursive functions is finitely generated by
some effective operations, then the family has a universal (total) recursive function.
At the end., we shall note the following

Proposition 6. If the family § of unary total recursive functions has a uni-
versal recursive function, then there exists a family & such that § C & and the
family & is finitely generated by some effective operations.

Proof. Indeed, let © be universal for the family §. Fix the functions I, S, O
and f defined as follows:
I(z) =2, S(z) =z + 1, O(z) =0 and

() = {(—)(n,:r), if z = (n,z),

0, otherwise.

Let us define the binary operation (.,.) between the functions as follows:

(f1. fol(z) = (fi(2), f2(2)).
It is easy to show that the family &, which is generated from the functions I, S, O,
f. Ar.(z)g, Az.(x); by the operations composition and (.,.), contains the family J.

Open problem. Given a family § of unary total recursive functions, which
has a universal recursive function, is it true that the family § is generated from
finitely many functions belonging to § by a finite number of effective operations?
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