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In the recent article [1] Kozlov and Harin generalize the motion of a particle in a central
ficld to the case of constant curvature spaces. In this remark we show that the problem
of the non-integrability of the perturbed motion in a central field on the sphere and on
the Lobachevski’s space is reduced to the flat case considered by Holmes and Marsden
using Melnikov integrals.
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1. INTRODUCTION

In {1} Kozlov and Harin generalize the motion of a particle in a central field
to the case of constant curvature spaces. They study mainly the cases when all
orbits are closed. It turns out that these cases are analogous to the gravitational
potential and to the potential of an elastic string. Another important result is that
the integrability of generalized two-center problem on a constant curvature surface
is established and it is shown that the integrability remains even “elastic forces”
are added.

It is natural to consider also the non-integrability of perturbed motion of the
particle in a central field in constant curvature spaces. More precisely, we consider
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the interaction potentials which allow separatrices in the dynamics of the unper-
turbed problem and these separatrices split after small perturbation. As a tool we
shall use the so-called Melnikov's integrals [2].

In this note we shall show that the problem of non-integrability of the perturbed
motion in a central field on the sphere and on the Lobachevski’s spaces can be
reduced to the flat case, considered by Holmes and Marsden [3]. We shall first recall
briefly their result, which is an example of a more general treatment of Melnikov’s
theory.

Consider the perturbed Hamiltonian

H*® :HO(T',}).,-,})Q)+EH1(T,[),‘,9,])/)), (1)

where m = 1, (r,8) are the usual polar coordinates,

HO_]‘ 2 pg Vir

Let V(r) be a potential with a single maximum, so that for suitable values of pg # 0
the effective potential has a minimum at r_ and a maximum at ry (r- <r4) and

V(r)+p;/(2r*) 200 as r—0.
Thus H® has a homoclinic orbit

(7(t),Pr(t), B(t) + 6o, Pa),

where
T(t) > re, Pr(t) 20 as t-— +oo,

t
pr(0) =0, ﬁ#&szfﬁm&
0
The derivative Q(t) = OH°/8py is evaluated on the homoclinic orbit.

Proposition 1 ([3]). Let the Melnikov integral

M (6,) =/°° {Ho%l-} (t,0)dt,

-0

where {-} is the Poisson bracket, have simple zeros as a function of 6. Then for
a sufficiently small €, the system (1) has Smale horseshoes on the energy surface
H¢ = h and hence it is non-integrable.

The note is organized as follows. In section 2 we consider the motion of a par-
ticle in a central field on S3, following Kozlov and Harin [1]. A simple construction
reduces the problem to the flat case, already discussed in the foregoing. In section
3 we consider briefly the situation on Lobachevski’s space. We conclude the note
with several remarks.
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2. MOTION IN A CENTRAL FIELD IN S?

In this section we consider the analogue of the classical problem in a central
field on 5. We follow closely Kozlov and Harin [1]. Consider the particle P with
unit mass moving in a field of force with the potential V', depending only on the
distance between the particle and some fixed point M (say the north pole) on the
sphere S*. Let 6 be the length of the arc of the great circle connecting the points
P and M. It is well-known that the potential of gravitational interaction satisfies
the Laplace equation. Then V" has to be a function of the angle § only and the
Laplace equation has to be replaced by the Laplace-Beltrami’s one

, . 9 a .2 av’ .
AV = sin 9% (sm 9—(,-)?) = ().

Its solution is .

+ «,

tand
where «, ¥ > 0 are constants. It is seen that in addition to the attracting center
M , this field has a repulsive center at the antipodal point M’. It is proven also that
when V' is an arbitrary function of 4, the trajectories of P lie on two-dimensional
sphere containing points M and M'.

Let (8, ) be the spherical coordinates on the above mentioned two-dimensional
sphere. Then the Lagrangian is

L= % (62 +sin?65?) ~V(6), V(B) = U(tan0).

Introduce the polar coordinates by

P =, r:cota_ni,

see Fig. 1. (A slightly different construction was used in Dubrovin et al. [4] or
Kozlov et al. [1].) In these variables the Lagrangian becomes

22 292 .
Lzl( A )—U(r).

2\ (1+r2)2 " (1+r2)2
M
P
.
0 (r, )
Fig. 1
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Next. introduce the “new” time by
ds = (1 +7)dt/2.

The ‘prime’ denotes differentiation with respect to this new time variable, ' = d/ds.
Then '

1 y 2 9 Ty
L= 3 (7"2 + 7"(&;}’)‘) - Ulr).
Passing to the Hamiltonian, we get
o 1 o P; -
H =3 p,+;§ + U(r) (3)

which has exactly the form (2) and hence it is integrable.
Consider a small perturbation of the Hamiltonian (4), namely

HS =H +eH (r,pr, ¢, pp)- (4)
The following proposition is true:

Proposition 2. Given a potential V' (6) such that U(r) has a single mazimum
and for suitable values of p, # 0, the effective potential has minimum at - and
mazimum at v (r- < ry) and U(r) + p%/(2r?) = o0 as v — 0. Thus, H° = h
has a homoclinic orbit. Then, if

¢ 0 Hl
M (o) =/ {H s'ﬁ} (t,po)dt,
e
cvaluated on the homoclinic orbit, has simple zeros, the systern (4) is non-integrable.

Remark 1. For instance, the class of the potentials of the form
Ur) = ar® — br* |

with positive constants a, b, satisfies the requirements we need.

3. MOTION IN A CENTRAL FIELD IN LOBACHEVSKT'S SPACE

This case is similar to that of the previous section and therefore it will be
briefly discussed. Let (x,¢) be the polar geodesic coordinates. Then the potential
17 (x), analogous to the gravitational potential, has to satisfy the Laplace-Beltrami
equation

AV = sinh™? Xb% (sinh? Xgi ) =0,

see [5]. Its obvious solution is

Y
= +
tanh y




where «, v > 0 are constants.
Consider now the Lagrangian of the point with unit mass with more general
potential V{(y) = U(tanh x):

1 9 AR SR .
L= 5 (x° 4+ sinh” x¢”) — U(tanh x) .

Introduce the polar coordinates

Y=, T=tanh§ (r<1).

Then L reads

1 472 472 p? i
b= 2 <(1 — 72)2 + (1 _.,.2)2) —U(r).

Let us introduce the “new” time, whose definition in the case under study is
ds = (1 —r?)dt/2.
Passing to the Hamiltonian, we get now

1({., -
H = (1‘); " ‘1-’?-) +U(r), (5)

which has ezactly the form (2).
Consider, once again, the perturbed system with small Hamiltonian perturba-
tion

He :H0+€Hl (T,pr,@;p@) . (6)
The following proposition is true.

Proposition 3. In the conditions of the Proposition 2 (note that here r < 1),
if the Melnikov function M (wg) has simple zeros, the system (6) is non-integrable.

We shall conclude the note with several remarks.

Remark 2. Similarly to Holmes and Marsden [3], it is to be noted that for
almost all choices of U(r), the function M () has simple zeros.

Remark 3. The foregoing problem can be considered as well in higher dimen-
sions. Then the Melnikov’s vector can be used (see Wiggins [6]), but certain KAM
conditions are needed.

Remark 4. It is seen that the analogue of the classical Kepler problem does
not fall in our cases, since it does not possess a homoclinic orbit. We believe
that the methods, used by Yoshida [7], can be applied to it for certain classes of
perturbations, see also [8].
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