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1. INTRODUCTION

For many problems in the Geometry of Banach spaces and Nonlinear analysis in
Banach spaces, the existence of bump functions with prescribed order of smoothness
or with derivatives sharing properties of Holder’s type is of essential importance.

As a Frechet smooth norm immediately produces a bump function of the same
smoothness, all negative results about bump functions are negative results about
the smoothness in the class of all equivalent norms.

The question of finding an upper bound of the order of Frechet differentiability
of bump functions in arbitrary Orlicz space is solved in [10]. Recently, in [11] Ruiz
has proved that for a given Orlicz function M all weighted Orlicz sequence spaces
€m(w), generated by weight sequence w = {w;}32,, verifying the condition

oo
lim w;, =0, ij,, = 00, (1)
k=1

k—ro0
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for some subsequence {wj;, }£° ., are mutually isomorphic. This result raises the
question whether the best possible w;-Holder properties of the first derivatives of
bump functions in £3;(w) depend on the sequence w = {w;}$2,, verifying (1).

For the proof of the main result we shall need an estimate from below of the
modulus of smoothness in weighted Orlicz sequence space £p(w). Maleev and
Troyanski [9] have found an upper estimate for the modulus of smoothness of an
arbitrary Orlicz space. Figiel in [3] has shown that this estimate is exact up to
equivalent renorming in Orlicz spaces. Using the method of Figiel, we will show
in Section 4, Lemma 1, that the estimates found in [9] are exact up to equivalent
renorming also in weighted Orlicz sequence space.

2. PRELIMINARY RESULTS

We denote by X a Banach space, X* its dual one, Sx the unit shpere in X, N
the naturals, and R the reals. Everywhere differentiabilily is understood as Frechet
differentiabilily.

An Orlicz function M is an even, continuous, convex and monotone in [0, 00)
function with M(0) = 0, M(t) > 0 for any ¢ # 0. The Orlicz function M is said
to have the property A; if there exists a constant C such that M (2t) < CM(t) for
every t € [0, 00).

To every Orlicz function M the following numbers are associated:

oy =sup{p: sup M(A)/(M(NE*) < oo},
0<A, £<1

ajg =sup{p : sup MA)’/M(\t) < o},
1<A, <00

apy =min {a},, a7} (see, e.g., [5], p. 143, and [6], p. 382).

Let (S, X, ) be a positive measure space. The Orlicz space L m(p) is defined
as the set of all equivalence classes of y-measurable scalar functions z on S such
that

M (z/2) = / M (2(8)/)) du(t) < 0o
S

for some A > 0, equipped with the Luxemburg’s norm
l|z]| = inf {)\ >0 : M(z/)) < 1} . 2)

For § = Nand w = {w;}32, = {u(5)}$2, we get the weighted Orlicz sequence
spaces £(w). In this case we have z = {z; 1521 € €u(w) iff there exists A > 0:

M(z/)) = i wiM(z;/)\) < 0.

j=1

Clearly, the unit vector sequence is an unconditional basis in £, (w). When w; =1
for each j € N, we obtain the usual Orlicz sequence space and denote it by ps
instead of s (w).
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Let w = {w;}$2, be a sequence and w; > 0 for every j € N. By w € A we
mean that there exists a subsequence {wj, }32,, verifying conditions (1).
We call modulus of smoothness of X the function

px(r) = £ supflle +73ll +lls = 7yll =2 : 7,y € Sx}, 7 >0

We introduce the following function necessary for the estimation of p(z,, (w),|-| y(7)

with respect to an appropriate equivalent norm | - | in £pr(w):
M (uv)
_ 2 .
Gu(r)=r1 sup{u2 W) u € [r,1], v > 0} , T€(0,1].

The function f : X — R is said to be differentiable at z € X if there exists
zt € X* such that

f(z +ty) = f(z) +tz;(y) +r(z,9,0), (3)
where th_r)% t~1sup{r(z,y,t) : y € Sx} = 0. The functional 27 is called derivative

of f at z and is denoted by f'(z).

In the applications often are considered functions, which are not only differen-
tiable, but their derivatives share properties of Holder's type.

By Q) we denote the class of all functions w : R¥ — R™ such that w(t) = o(t)
and wy(¢) = w(t)/t is a nondecreasing function, satisfying the condition w;(At) <
Awi (t) for every A > 1.

We say that f : X — R is locally H“-smooth in the open subset V C X if f is
continuously differentiable in V and for every z € V' there exist d =6(z) >0 and
A = A(z) > 0 such that

1f'(y) = f' (I < Awr(lly - 2])) = A

for every y,z € B(z;8) C V (see [1]).

If there exists A > 0 such that (4) is fulfilled for arbitrary y,z € V, the
function f is called H“-smooth in V. The class of all H“-smooth (locally
H“-smooth) functions in V is denoted by H*(V)) (LH “(V)), respectively.

We say that b: X — R is a bump function iff suppb = {z € X; b(z) # 0} is
a bounded non empty set.

It is easy to observe that if there exists H*(X) (LH“(X)) —a smooth equiv-
alent norm, then there exists H*(X) (LH“(X)) — a smooth bump (see, e.g., (2],
p. 9). The converse is not true. Haydon [4] gives an example of a space with
C'*-smooth bump, which has not even a Gateaux differentiable equivalent norm.

w(lly — zIl)

v — 2 )

3. MAIN RESULT
Theorem 1. Let X = £p(w), where M is an Orlicz function, satisfying the

A,-condition at 0 and at 00, aym € (1,2), w € A andw € Q. Ifb is an LHY -smooth
bump function in £y (w), then
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4. MODULUS OF SMOOTHNESS OF WEIGHTED ORLICZ SPACES

In the proof of the next Lemma 1 we shall use the following result:

Proposition 1 ([3], [6]). There exists a positive absolute constant L such that
px(0)/0* < Lpx(r)/72, whenever 0 < 7 < o.

Lemma 1. Let X = €y (w), where M is an Orlicz function, satisfying the
Az-condition, and w € A. Then for every equivalent norm |- | on X there ezxists a
constant K = K|.| > 0 such that

Px)(T) 2 KGum(T),  7€(0,1].
Proof. We can assume WLOG that |z| < ||z|| < blz| for every z € X, where -1l
is the Luxemburg norm (2). As the norm || is fixed, we can denote p(T) = px,1.(7)

and we shall denote the subsequence {w;, }$2, fulfilling (1) again by {w;}%2; just
for simplicity.

n
Observe first that from the equivalence of the norms it follows that > o(zi)) <
: i=1
n
1, provided ) p(||z;||) < 1. Hence by Lindenstrauss’ theorem (in the Figiel’s form
i=1 :

n
> e.-x,-ls 1 + /3, which gives

=1

[3]) there exist signs e; = +1,i=1, ..., n, so that
us that

<(1+v3)b=4, (5)

n
>
=1

n
whenever ) p(||z;]]) < 1.
1=1

For every given 7 € (0,1], u € [r,1], v € (0,00) we put n = (1/p(w)], ¢ = uw,
where by [a] we denote the largest integer not greater than a.
For every v we can choose a sequence of integers {me}2,;:

1 Mi+1 1
< Y ow< :
M) 2 S M)
becausew € A. Let zx € X, k=1,...,n, be disjointly supported vectors such that
Me41
I =¢C Z €5,
j=m,,+1
where {e;}32, is the unit vector basis in X. Obviously,
ME41 ME 41
M{c/||zl])
b= 2 wiMlellal) = M(e/lodl) 3 w; < =gl
J=mp+1 J=mp+1

So we obtain that lz|| < u, which yields the inequalities 2 Allzil) < np(u) < 1.
i=1
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Using (5), we obtain immediately the inequalities

n Mi41 n ME+1
1
1> ; ‘_Z w;M(c/d) = M(c/d) 2_: ._Z w; 2 M(c/dngres
=1 j=mir+1 k=1 j=m+1

Hence

M(c/d) _ 2 2
M) o< 2m < 4p(u).

Since ¢ = uv, then there exists a constant «, depending only on d and the
As-condition, such that M(uv) < aM(c/d). Finally, we obtain

M (uv) < aM(c/d)

< .
. o S iy S den (©)
To finish the proof, we need only to apply (6) and Proposition 1. Indeed,
M (uv)

u) p(r)
Gu(r)=1> sup —=x <72 SUp 40& < r?4al =5
) u€lr,1],v>0 u?M (v) ug(r,1],v>0 u? 72

Combining the result in (9] with Lemma 1, we find that the estimate of the
modulus of smoothness in weighted Orlicz sequence spaces is exact up to an equiv-
alent renorming.

5. PROOF OF THE MAIN RESULT

In the proof of Theorem 1 we shall need a variant of known theorems (see, e.g.,
2], p- 199). As the proofs are literally the same, we shall omit them.

Theorem 2 (see, e.g., [2], 5.3.1). Assume that a Banach space X 2 co.
Suppose that X admits a bump function b(z) € LH*(X). Then X admits a bump
function f(z) € HY(X).

Theorem 3 (see, €.g., [2], 5.3.2). Assume that a Banach space admits a bump
function b(z) € HY(X). Then X admits an equivalent norm | - | € H*(Sx).
Now we are ready to prove Theorem 1.

Proof of Theorem 1. Let f be an LH“-smooth bump function in X =
pr(w). Since there is no isomorphic copy of ¢o in X, then according to Theorem
9 there is a H¥-smooth bump function in X. According to Theorem 3, there is an

equivalent H¥(Sx)-smooth norm [| - ||| such that
px,jn(t) < Kw(t), t20, K>0. (7)

On the other hand, we have just proved that the best order of the modulus of
smoothness of any equivalent renorming of X is Gum(t), i.e.

px, () = cGu(t), c=cyy>0 8)
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for every equivalent norm || - ||| in X. Combining (7) and (8), we obtain

Gu(t) < %w(t).

Remark. If ap = 2 and M, satisfying the condition
sup{M (uv)/u*™ M (v) : u,v € (0,00)} < oo,

is solved in [8].

Remark. If M ~ t2, then there exists an equivalent, infinitly many times

Frechet differentiable norm, and it is seen right away that G m(T) = 72, so there is
nothing to be proved.
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