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1. INTRODUCTION

Let N denote the class of Nevanlinna analytic functions

1

w=f(z)=/:—ff)—=zg‘?;, Z¢[0,1], (1)

0 n=1
where p(t) is a probability measure on [0,1], i.e. u(t) is a nondecreasing function
on [0,1] with (0) = 0 and p(1) =1, and

1
an-—‘-/tn"ldp(t), n=12..., a=1 (2)
0
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If we replace z by 1/z in (1), we obtain the class T of analytic functions

=y =/ (1) =0/ 2B S e, cglted, ()

n=1

with totally monotonic Taylor coefficients, which has been introduced by Hausdorff
[1]. According to the Thale theorem [2, pp. 234235, Theorem 2.3] (see also Good-
man [3, pp. 183-184, Section 8]) the disk {2z : |2 — (1/2)| > (1/2)} is the maximal
domain of univalence for the class N. Hence the half-plane {z : Rez < 1} is the
maximal domain of univalence for the class T'. Wirths [4, p. 512, Corollary 2.3] has
found the Koebe domain of the class T with respect to the unit disk |z] < 1. In [5)
it is noted that the Koebe domains of the classes NV and T with respect to the disks
|z] > 1 and |z| < 1 are one and the same, respectively. Therefore we need to study
only the class T' in the unit disk [z] < 1. It follows from the Wirths result (see
also [5, p. 345, Corollary 2]) that the largest common region of convergence of all
Taylor series at the point w = 0 of the inverse functions z = 9¥(w) of the functions
(3) in |z] < 1 is the disk |w| < 1/2. Let

(o 0]
1
z=pw) =) buw", [w|< 5 =1, (4)
n=1

be such series, where the coefficients b,, are determined by the coefficients a, in (2)
with the help of Theorem 3 below.

In this paper we derive variational methods which yield more precise informa-
tion in comparison with the Wirths result [4, p. 513, Theorem 2.3] for the extremal
functions of a given bounded real-valued continuous functional in the class T'. As
an application of these methods we find the minimum and the maximum of the co-
efficients b, by and by and state two conjectures for the extrema of all coefficients
bo, n=2,3,4,...,in (4).

2. VARIATIONAL FORMULAS FOR THE CLASS T

The variational methods and results represented by Theorems 1 and 2 below
are new.

Theorem 1. Let ¢ with —1 < € < 1, € # 0, be an arbitrary number and let
the function ¢(z) belong to the class T. Then the varied function

1
Yu(2) = / , Z(Ci#(ti)t , z € (1, +00], (5)
O T 1+e—2et

also belongs to the class T and it has the asymptotic representation

0u(2) = p(z) — 2622 (‘1(1 ))2 du(t) + 0(€?), |2l <1, (6)
0
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where O(e?) denotes a magnitude, the ratio of which to €? is uniformly bounded for
, lying in an arbitrary closed set of the disk |z| < 1.

Proof. The linear fractional function

(1—e)t

= — <t<1 -1
1+¢e—~2t’ 0<t<l, <e<l, e#0, (7)

for fixed €, increases with ¢ from 0 to 1. This property of (7) permits us to substitute
(1- g)t/(1 %+ € — 2et) for ¢t in (3) to obtain (5). The function (5) belongs to the
class T with the probability measure

. (1+e)r
V(T)°_“(1—s+2€'r , 0<7<1.

The difference between (5) and (3) is

(1-1) du(t)
Pa(2) = 2z / 1—tz)2 _k-1-t (8)

1—-tz

T / (tl(l—_tzt))zz ((5=55) wo. i<

since [2¢t — 1 —tz[ < [1—tz|for 0 <t < 1 and [2| < 1. Thus from (8) we obtain (6),
which completes the proof of Theorem 1.

Theorem 2. For given point z of the disk |z| < 1 and a given analytic function
®(uo,u1, .- .,Un; 2), n > 0, on the set |J {¢(2),¢'(2),... ,<p(")(z);z}, the minimum
T

(mazimum) of the functional
Re® ((2),'(2), ., 9™ (2); ) 9)

in the class T' is attained only either in the subclass Ty C T of functions

go(z):cz-i-(l—c)lzzeTl, 0<e<], (10)
or in the subclass To C T of functions
Cr2
eT.
p(z) = ; T 2 (11)
with
»p
1<p<n+2, 0<h<t;<--<t,<1, 0<ee <1, Y =1, (12)
k=1



where ty, ta, ..., t, are among the numbers 0 and 1, and the roots in the interval
0 <t <1 of the equation

Re{ [Qc—}g—iﬁ?)—]zz(l —tz)" (13)

N i &gz_(f'v'_)]suw(s ~1+2t2)(1 - tz)"'s} (1- tz)”“} =0,
s=1 ’

where we assume that at the extremum of the functional (9) the equation (13) is
not an identity for all t in the interval 0 <t <1,

3lp(2)] = & (0(),2'(2), - ¥ ()i 2)
and the empty sum for n = 0 is zero by convention.

Proof. The extremal functions ¢(z) € T exist since the functional (9) is con-
tinuous and bounded on T and the class T is normal and compact in |z| < 1. If we
set

ug = (2), ui=¢(z) (0<s<n), (14)

then the increments by the asymptotic formula (6) are
1
dug = u} — us = —2¢s! /t(l — ) I,(t, 2) du(t) + O(e®) (0 <s<n), (15)
0

where

L,{t.2) = <1ftz)8 [(341-1) (ljtz)2+2(i) 1 —ztz)t * (8;1> 215] (16)

for 0 < s < n, and (T) =mform=1,2,... and (T) =0 for m = 0, —1.
Further we introduce the abridged notations
& = B(ug, Ui, ..., Un;2), D*=B(ug,ug,...,Upn;2), (17)

where u; and u* (0 < s < n) are given by (14). Then for sufficiently small |¢| we
have the Taylor series

00 1 n o o
* —_ i d s
& ¢+;U!(§aus u> ) (18)
for the functions (17). From (18) and (15)-(16) we obtain
1

3 =P — 2ezn:s! / {1 — £)1,(t, z) dpu(t) + O(e?). (19)

s=0 0

0P
Oug
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1t follows from (19) that
<I>

1
Re®* =Re® — 2e/t(1—t)Re1
0

The extremality of the function ¢(2) in the class T and the arbitrariness of € imply
that the coefficient of € in (20) vanishes, i.e.

/ l—t)Re[Z

)] du(t) + O(e?). (20)

] du(t) = 0. (21)

If the equation

P(t) = Re [Z s! } - (22)

is not an identity for all ¢ in the interval 0 < ¢ < 1, i.e. if the conditions for
the equation (13) hold, then the equation of the extremality (21) is fulfilled if and
only if the measure u(t) is a step function with points of discontinuity at 0, 1 and
the roots of the equation (22) in ¢ in the closed interval [0, 1], i.e. the roots of the
equation (13) in ¢ € [0, 1], where the sum of the corresponding jumps equals to unit.
In fact, this is evident if 44(t) is a corresponding step function. Conversely, it follows
from the Goluzin variational formula applied to the class T (see, for example, [6,
p. 93, formula (19)]) that u(t) is a constant between any two adjacent roots of
the equation (22) for the extremal function ¢(z) (see the comments for formulas
(27)-(28) in [6, pp. 94-95]). Hence, the extremal functions ¢(z) belong to the
subclasses 71 C T and T, C T of functions (10) and (11)-(12), respectively, where
the upper bound of the number p is determined in the following manner.

Let the real number € be with a sufficiently small |¢|. If the extremal function
¢(2) € T and in (11)-(12) we substitute ¢ + ¢ and cg41 — € for ¢k and ciyq,
respectively, then the varied function

o=l +e[ -] (23)

also belongs to the subclass T,. If we set analogously
u = (z), ' =¢ll(z) O0<s<n), (24)

then by formula (23) the increments are

o° z & z

0251 -tz 02°1—tp12

du,:u;'—us=e[ ] (0 < s < n). (25)

For brevity, we again denote

® = P(ug, U1,...,Un;2), ™ = B(ug",ui*,. .., un"; 2), (26)
where u, and u}* (0 < s < n) are given by (24). Then the corresponding Taylor
series (18) for the functions (26) and (25) yield

Re®** = Re® +cR Z ¥ =z ¥ z +0(e?). (27)
© ene 6u3 0281 —trz 0281 —tpy12 '
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In addition, from the conditions for the equation (13) (or (22)) it follows that we
have the inequality

aq)zgiiz)] = 52 (¢, #(2), . 9 (2)i2) 0 2%

at least for one s € {0,1,...,n}. Then the extremality of ¢(2) in (27), the arbi-
trariness of € and the inequality (28) imply the condition

Re{"m[as z oz ]}:o. (29)

s Bu, [82°1—trz  02° 1 —trp12

The condition (29) shows that the function

. 8% o° z
pore Oug 0251 — tz

Q(t)ERe[ ], 0<t<1, (30)
has equal values at any two adjacent points of discontinuity ¢; and tx4; of the
measure u(t) for the subclass T, i.e. Q(¢) has equal values at all the points of
discontinuity of the measure u(t) for the subclass T>. Hence, the derivative Q’(t)
vanishes at least at one point inside the intervals between any two adjacent points
of discontinuity of u(t) in 0 <t < 1. But from (30) and (22), having in mind (16),
we conclude that |

Q'(t) =Re [ ~02 0 Z ] = Re [Xn:s!g—zh(t, z)‘ =P(t). (31)

pord Oug 02° (1 — t2)? pord

The equation (22) or the equivalent algebraic equation (13) have no more than
2n + 2 roots in ¢. Taking into account the endpoints 0 and 1, we conclude that the
step measure u(t) has no more than 2n + 4 points of discontinuity in the interval
0 <t < 1. It follows from (31) that if the points of discontinuity of u(t) in
0 < t <1 are more than n + 2, then the equation (22) (or (13)) will have more
than 2n + 2 roots in 0 < t < 1, which is impossible. Hence, the number p satisfies
the inequalities in (12). If the extremal function ¢(z) € T, the corresponding
assertions are established in the same way.
This completes the proof of Theorem 2.

3. APPLICATION TO THE COEFFICIENT PROBLEM
OF THE INVERSE FUNCTIONS IN THE CLASS T

We need the following

Theorem 3. In terms of the coefficients an in (2), the coefficients b, in (4)
have the following simplest ezplicit form:

b —lni(—l)" ntk-1y, (az,a a ), n>2, (32)
n’_nk_l k n—1,k\%42,43,...,8n—-k+1), Z 4y
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where
k'(az)*1(as)*? ... (@p—g41)/—*

Dy r(az,as,...,¢,— =
n1k(02,85, 5 Gnietn) = ) vyl vp ! (33)
for L<k<n—1,n 22, are the ordinary Bell polynomials in a3, as, ..., Gn_g41,
and the sum is taken over all nonnegative integers vy, va, ..., vn_ satisfying
n+va+t - +uvpp =k
n 3 (34)

vit2va+ - +(n—kpr=n-1, 1<k<n-1n>2.

Proof. We use the method in [6, pp. 91-93, Theorem 1], which is applicable
to each analytic function F(z) in |z| < 1 normalized by the requirements F(0) =
F'(0) —1 = 0 (see in [6] a recurrence relation for the polynomials (33) and tables
for the polynomials (33) and the coefficients (32)).

Theorem 4. The minimum (mazimum) of the coefficients b,, n > 2, from
(32) in the class T' is attained only either in the subclass Ty C T of functions (10)
or in the subclass To C T of functions (11)-(12) with:

i)l<p<mifn=2m,m=1,2...,

i) 1<p<m+1lifn=2m+1l,m=1,2..,
where in (12) the points ty, t2, ..., tp, are among the numbers 0 and 1 and the roots
in the interval 0 <t < 1 of the equation

=, b,
= dag

P(t) = (s=1Dt*"2=0, n>2 (35)

(for n = 2 this equation is impossible — see below Corollary 1), and the function

S abﬂ ts—l
Oa, ’

Q) = Q) =Pt), n>2, (36)

$=2
has equal values at any two adjacent points of the sequence t, ta, ..., t,.
Proof. We apply Theorem 2 for z = 0 and the function

bn = ®(uo,u1,. .., un;0)

=15y ”*"‘I)D (“—3 ST ) (37)
T k nE 2B i~k + 1)1

on the set |J {¢(0),¢'(0),...,¢(™(0);0}, where n > 2, having in mind (32)—(34).
T

For the function (37), the equation (22) (or (13)) and the function (30) for the
condition (29) are reduced to (35) and (36), respectively, where
0b, 0P (P(s) (0) Ug
= s! = =—, 2<s<n.
Oag d Ou,’ Gs s! st’ =83n (38)
It is clear from (38) and (32)-(34) that for the function (37) the equation (35) is
not an identity in ¢ in the interval 0 < t < 1 since, for example, 8b,,/8a, = —1 # 0,
n > 2. Further:
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(i) For n = 2m, m = 1, 2,..., the function u(¢) in (3) for the extremum of
(37) has not more than 2m points of discontinuity among the roots of the equation
(35) and the points 0 and 1. For all the points of discontinuity of the extremal step
function u(t), if they are more than one, the function (36) has equal values. If u(t)
has more than m (m > 1) points of discontinuity in 0 < ¢ < 1, then the equation
(35) will have more than 2m — 2 roots in 0 < ¢ < 1, which is impossible. Hence,
the points of discontinuity of u(t) in 0 < ¢ < 1 are not more than m (m > 1).
Therefore, the interval of the integer p in (12) is contracted to 1 < p < m.

(ii) Forn =2m + 1, m = 1, 2,..., the function u(t) in (3) for the extremum
of (37) has not more than 2m + 1 points of discontinuity among the roots of the
equation (35) and the points 0 and 1. For all the points of discontinuity of the
extremal step function u(t), if they are more than one, the function (36) has equal
values. If u(t) has more than m + 1 points of discontinuity in 0 < ¢ < 1, then the
equation (35) will have more than 2m — 1 roots in 0 < ¢ < 1, which is impossible.
Hence, the points of discontinuity of u(t) in 0 < ¢ < 1 are not more than m + 1.
Therefore, the interval of the integer p in (12) is contracted to 1 < p <m + 1.

This completes the proof of Theorem 4.

Corollary 1. The coefficient by from (32) satisfies the sharp inequalities
-1< be <0, (39)

where the equalities hold only for the following extremal functions:
— on the left-hand side of (39), for the function

Y(w) = —— = Z( )" w (40)

inverse of the function

(41)

¢(z) =

— on the right-hand side of (39), for the function
P(w) = w, (42)

inverse of the function
p(z) =z €Th. (43)

Proof. For n = 2, Theorem 4(i) yields p = 1. For n = 2, from (32)-(34) and

(35) we obtain
Oby

— = 4
o =1, (44)

by = —ax,

and

P(t) _ —-1#0, (45)

respectively. It follows from (45) that the point of discontinuity of u(t) can be
either t; = 0 or t; = 1 with the corresponding jumps ¢; = 1 and ¢; = 1. Therefore,
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‘l
we obtain the two extremal functions (41) and (43) of the form (10), the inverse
ones of which (40) and (42) supply the equalities in (39), respectively.

Remark 1. The inequalities (39) and the extremal functions (41) (or (40))
and (43) (or (42)) follow from (44) and (2) for n = 2 as well.

Corollary 2. The coefficient bz from (32) satisfies the sharp inequalities

] 5 <bs<l, (46)

where the equalities hold only for the following extremal functions:
— on the left-hand side of (46), for the function

vw) =2 (1+w-Vi—wra?)
=w+ ; i(—l)n—lwn ) (11{2) (n i ,,)» (47)

n=2 n/2<v<n

where /1 = 1 and the inner sum is taken over all integers v satisfyingn/2 <v <n,
inverse of the function

1 o0
z=z+ZZz"€T1; (48)
n=2
— on the right-hand side of (46), for the function (40), inverse of the function
(41), respectively.

Proof. For n'= 3, Theorem 4(ii) yields p = 1, 2. For n = 3, from (32)—(34),
(35), (36) and (38) we obtain

1 "
b3=—a3+2a§, (12:(‘07@, a3=(p—6(9)', (49)
%P(t) =2a3 -t =0, (50)
and
Qt) = 4ast — >, Q'(t) = P(t), (51)
respectively.

If p=1, then (11)-(12) are reduced to

_ VA
T 11—tz

where ¢ can be either the root ¢t = 2as of (50) or any of the points 0 and 1. From
(52) we obtain ¢"(0) = 2¢. On the other hand, ¢"(0) = 2a; = t, and hence t = 0.
Then (52) takes the form ¢(z) = z, the inverse one of which is ¢¥(w) = w. It is clear
that the identity is not an extremal function. If ¢ = 1 in (52), then we obtain that
©"(0) = 2, ¢"(0) = 6 and the equations (49) yield b3 = 1. Thus for the function
(40), inverse of the extremal function (41), the bound 1 in (46) is attained.

€ T27 (52)

(z)

43



If p = 2, then (11) has two terms, corresponding to the condition Q(t;) = Q(t2),
where Q(t) is determined by (51) and ¢; and ¢, are among the numbers 0, ¢ = 2ay
and 1. According to this condition and the Rolle theorem, the equation (50) has an
odd number of roots between t; and t,. This is possible only if £; = 0 and ¢, = 1.
Hence, the extremal function ¢(z) is

z
1-2

Further, the condition Q(0) = Q(1), where Q(t) is given by (51), yields a; =
¢"(0)/2 = 1/4. On the other hand, from (53) we obtain ¢"(0) = 2(1 - ¢), and
hence ¢ = 3/4. For ¢ = 3/4, from (53) we obtain the extremal function (48) and
its inverse function (47) for which the bound —1/8 in (46) is attained.

p(z) =cz+ (1 —¢) €Ty, 0<c<l. (53)

Remark 2. The second sharp inequality in (46) and the extremal function (41)
(or (40)) can be obtained in another way. With the help of the Cauchy inequality
and (2) we obtain that

1

1 2 1
a3 = (/l.tdp(t)) < 0/12 du(t).‘o/t2 du(t) = as. (54)

0
Now from (54) and the first equation in (49) we obtain the sharp inequalities
b3 <az <1

with the unique extremal function (41) (or (40)).

Corollary 3. The coefficient by from (32) satisfies the sharp inequalities

5+ 44/10
135

where the equalities hold only for the following extremal functions:
— on the left-hand side of (55), for the function (40), inverse of the function

“1<by < =0.13073415....., (55)

(41);
~— on the right-hand side of (55), for the inverse function of the function (53)
for
c= E-}S@ = 0.45584816 ... . (56)

Proof. For n = 4, Theorem 4(i) yields p = 1, 2. For n = 4, from (32)-(34),
(35), (36) and (38) we obtain

by = —a4 + 5aza3 — 5a3, (57)
P(t) = 5a3 — 1543 + 10ast — 3t* =0, (58)
Q(t) = (5a3 — 15a3) t + 5agt® — t°,  Q'(t) = P(t), (59)

where a3 3,4 are the coefficients of the extremal functions ¢(2) € T3, i.e.
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L0 e )
a4 = 24 3

(60)

respectively.

If p = 1, then (11)-(12) are reduced to (52), where t can be either any root
of (58) in 0 < ¢ < 1 or any of the points 0 and 1. Converting (52) or by means of
(60), (52) and (57), we obtain

by = —t3, 0<t<L (61)

If p = 2, then (11), having in mind (12), can have the following forms:
w(z):cz+(1—c)1_ztzeT2, 0<e<l, 0<ti<] (62)
(p(z)zc——f——-+(1—c) z €Ty, 0<c<l, 0<t<l, (63)

1-—-tz 1-2
and (53), where t (in general different for each function) is a real root of (58) and

the other root of (58) has to lie in the open intervals (0,t), (¢,1) and (0,1) in
accordance to (59) and the conditions

Q0) =Q(), Q1) =0, Q) =) (64)

respectively.
(a) From the first equation of (64) and (59) we obtain the corresponding equa-
tion for (62), namely,

5as — 1503 + Sagt — 2 = 0. (65)
1t follows from (58) and (65) that
2t 712
0.2—3', a3-—2-5-- (66)

On the other hand, from (60) and (62) we get
ay=(1-0ct, az=(1- ot?, as=(1- o). (67)

The equations (66) and (67) yield the different values ¢ = 3/5 and ¢ = 18/25,
respectively, i.e. the extremal function ¢(z) is not of the form (62).

(b) From the second equation of (64) and (59) we obtain the corresponding
equation for (63), namely,

5as — 15a2 + Sag(t+ 1) —t* =t —1=0. (68)
It follows from (58) and (68) that
2t+ 1 T2+ 2t +3
az =~ az = 25 ' (69)
On the other hand, from (60) and (63) we get
ap=ct+1-¢ a3 =ct* +1-c¢, a=c®+1-c (70)
The equations (69) and (70) yield the equations
2t - 2) 6-v30 _ o17a0581...  (71)

342 - 12t+2=0, t=

CFEt-1)° 3
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(the other root of the second equation is not in the open interval (0,1)). From (71),
(69) and (70) we obtain

.- 2(10+30) 0 — 15-2V30
- 35 R T
4. — 35— 6v30 4, — 345 —62v30
T 0 W= 45
By the values of a; 3 from (72) the equation (58) becomes

92 — 2 (15 - 2\/3_0) t+2 (17 - 3\/@) = 0. (73)
Really, for the roots of (73) we have

0< 6_‘/PE< 12‘\/ﬁ<1
3 9
Finally, by the values of ay 3 4 from (72) and (57) we obtain
_45-8v30
45

(c) From the third equation of (64) and (59) we obtain the corresponding
equation for (53), namely,

Saz — 1502 + 5a3 — 1 = 0. (75)

It follows from (60) and (53) that
a2=1-¢, az3=1-¢, ay=1-c (76)

From (75)-(76) we get the values

(72)

by = = —0.026271... . (74)

C,2= ———-10 :*;Sm (77)
The equations (76) and (77) yield
5F 10 5F V10 5F V10
T BT T w=T—, (78)
respectively. By the values of ay 3 from (78) the equation (58) becomes
9t2-2(5¢\/ﬁ)t+2q:\/ﬁ=o. (79)

Really, each equation of (79) has one root in 0 < t < 1, respectively. Finally, from
(78) and (57) we find

by = f’—"%;@ = —0.05666..., b = %1‘0 =0.13073415...,  (80)

respectively. Now the comparison of (61), (74) and (80) leads us to (55) and (56),
which completes the proof of Corollary 3.
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Remark 3. The first inequality in (55) and the extremal function (41) (or
(40)) follow also from (57), (54) and (2), namely,

by = —aq + Haz (03 - a%) > —a4 2 —1.

For the coefficients bs, bg, ..., we can proceed in the same way.

Conjecture 1. In the class T each coefficient b,, n = 2, 3,..., from (32)
attains its minimum (mazimum) only for the rational functions of the form (10).

Conjecture 2. In the class T each coefficient b,, n = 2,3, ..., from (32)
satisfies the sharp inequalities

b2m2—1, m=1’2,...,

and
b2m+]$1, m=1,2,...,

where the equalities hold only for the extremal function (40), inverse of the function
(41).
For n = 2, 3, 4 these conjectures are proved in the above corollaries 1-3.
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