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1. INTRODUCTION

The interpolation methods are a basic tool for approximation of functions.
While, in the univariate case, most of the interpolation problems admit a nice
treatment, often yielding a closed form expression for the interpolating function,
the study of the corresponding multivariate problems encounters serious difficulties.
For example, the interpolation by multivariate algebraic polynomials is not always
regular. One of the central directions of investigation in this field is the construction
of appropriate configurations of nodes for which the problem is regular. Similar
difficulties occur in interpolation by other multivariate classes and, in particular, by
splines. In this paper, we consider a standard problem of interpolation of bivariate
functions on a rectangular grid by a special class of splines, which we call (m,n)-
splines. Let us give the precise definition.

Suppose G := [a,b] x [¢,d] is a given rectangular domain on the plane. Let us
b— d -
introduce a grid on G defined by the lines z; = a + z'—M—g,y,- =c+] <

1,...,M, j =1,...,N. In this way we get a partition of G into a sum of small

1=

T
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rectangles O;; = [xi-1,2;) X [yj-1,¥;). We say that a function s(z,y) is an (m,n)-
spline on G if
am+ns
ax™m oy
where ¢;; are constants.
In what follows, for the sake of definiteness, we assume that G is the unit
square, i.e., G = [0,1]%. Let us denote by 0O0f; the closure of U;;
We consider the following lnterpolatlon problem
For a given sufficiently smooth function f and a set of MN distinct points
{ti;} in G, find an (m,n)-spline s(z,y) such that

(z,y) = ¢ for (z,y) € Ojj,

S(t,‘j)zf(t,;j), i=l,...,M, j'—'-’l,...,N, (1.1)
and satisfying the boundary conditions

(0 )_B‘f( y), 1=0,....m—1, yel0,1],

gj( ,0) = af(:x:O) j=0,...,n—1, ze€l0,1}.

We show that the interpolation problem (1.1) has a unique solution for any
choice of the nodes t;; = (&;;,7i;) such that

{xi—-1<€z’ijia i=1,---,M}
Yji-1 <nij <y, j=1...,N

The solution is given explicitly for some small (m,n). We study also the question
of approximation of the functions f by the corresponding interpolating spline s and
give an error estimate for (m,n) = (1,1), (1,2) and (2, 2).

2. PRELIMINARIES

The notion of a blending function is frequently used in this paper. Let us recall
the definition (cf. [1]).
Functions from the space

6k+lf
C'[01]2 ={f: a2k oyl € Coap, k=1,...,m, l=1,...,n},

satisf)'ring the conditions
gk+t f
dxk oyt
are said to be blending functions of order (m,n).
We shall denote the space of all blending functions of order (m,n) by B[o 12

=0,
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The next representation (given in [2]) of any sufficiently smooth function f(z,y)
in terms of blending functions of order (m,n) will be used in the sequel. It is based
on the Taylor-type operators T,;" and T}, defined as the Taylor expansion of f(x,y)
at (0,y), (z,0), respectively, of order m, respectively n. In other words,

" f = f0,9) + 5 f(O y)r + - + 1 o~ 3”;‘ - f(0,y)z™ 1,
1 Oz (m —1)! 8z

Lemma 2.1. For any function f € C[o 120 the following representation holds:

f@y) = T f(z,y) + 1) f=z,y) - T T, f(z,y)

m+n
( _1), n_1)|/ / (L‘-—t)m 1 )+ atma.if(t,T)dth.

Proof. According to the Taylor’s formula with integral representation of the
reminder, we have

tym=1 gm

1 —
f@n =1+ [ T 2 ) d

Applying again Taylor’s formula to f(™9)(t, ), this time with respect to y at y = 0,
we get

om / (y )n—l gmtn

g/ (BY) = Ty atm ! Z)T gmagnd BV A

am
Inserting the last expression of 5 f(t,y) in the first equality and taking into
account that, by the commutativity of the differentiation operator and T,

Y-t o™
 m= 1 5

fty)dt = T} [ f(z,9) - T f (=,9)]

we obtain the wanted equality.

Let us mention that By(z,y) := T f(z,y) + T} f(z,y) = T;°T, f(z,y) is a
blending function of order (m,n). Moreover, the restriction of By and its partial
derivatives B}”’ ) on the lines z = 0 and y = 0 coincide with the corresponding
values of f and its derivatives there fori =0,...,m—-1,7=0,...,n— 1.

Therefore, in view of Lemma 2.1, any (m,n)-spline f can be represented as a
sum of an appropriate blending function By of order (m,n) and a convolution of
the kernel
(z-8)F " (y -7}

(m-1)! (n-1)!

with a piecewise constant function c(t, 1),

K(z,y,t,7) =

c(t,r) :=ci; for (t,7) € Oy.
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Next we introduce a class of (m,n)-splines with a final support, the so-called B-
splines, which will be used as a basis in the space of (m,n)-splines. In order to do
this, we consider an infinite rectangular net in the plane:

{z; =i/M, y; = j/N, —o0 < i,j < o0, i,j — integers}.
As in the introduction, we denote
0 = {(z,y) 21 ST <2i,yj-1 SY< yj}-

With any pair (4, j) of indices we associate the B-splines B(m ™ of two variables of
order (m,n) defined by

B (z,y) == (- — @)t @i, -y Tigmar ) = ¥)Wi» - > Yiant1] = B (@) B (y)-

For simplicity of the notations we shall often omit the upper indices m and n, when
it is possible. Let us denote by D;; the support of B;;(z,y). It is the Cartesian

product of the supports of the univariate B-splines B™ (z) and BJ(-")(y), namely,
Dij = (ZiyTitm+1) X (Y5> Yj+n+1). Notice that in our notations the lower and left
most rectangle, included in D;j, is O j41.

Lemma 2.2. For any finite set [ := (I;,1;) C Z X Z of indices, the B-splines
Bf}"‘")(a:,y), (i,7) € I, are linearly independent in R?.

Proof. Assume the contrary. Then there exists a linear combination
9(z,y) = Y @;Bij(z,y)
(i,7)€l

with at least one non-zero coefficient a;;, which vanishes identically on the plane
R2. We introduce the lexicografic order in I. Let (io, jo) be the first member of I.
If ti,j, belongs to the interior of O;y;, C Djyj,, we have Bjyj, (ti,j,) # 0 and hence
@iyjo, = 0. Let (%,7) be the next member of I. Quite analogously, we get a;; = 0.
Hence a;; = 0 for all (¢,j) € I. O

Lemma 2.3. The functions {B;; ff._o'ljlio'l are linearly independent in [0,1)%.

The proof is similar to that of Lemma 2.2 and we omit it here.
Let us consider the subspace of (m,n)-splines

at

B9 —(0,y) =0, i=0,...,m—1,

S,‘;“, {séSmn:

-—(xO) j=0,...,n—1}.

Corollary 2.1. The B-splines {By;}115% ;" form a basis of SY, ,
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Proof. We have proved that {Bi;}i1g IJ-ZJ ! are linearly independent. It is

obvious that Bj; € 9, . (since Bij(z,y) = B{"™ (2)B{™ (y)). Besides, dimS%, ,, =
M N=number of B;;(z,y).

3. THE INTERPOLATION THEOREM

The regularity of the interpolation problem by univariate splines is completely
characterized by the interlacing condition of Schoenberg and Whitney [3], [4]. There
is not yet such a characterization result in the multivariate case. In the next theorem
we prove the regularity of the bivariate interpolation by (m,n)-splines for a quite
general class of node configurations.

Theorem 3.1. If
{ i1 <&j<zi=1L1...,M }
Yi-1<Mij SyY5, J=1..,N [’
then the interpolation problem (1.1) has a unigue solution.

Proof. There exists a unique blending function b(z,y) € B[0 12 such that

b i i
6y 0,y) = a;.(O,y), i=0,....,m~-1, ye€l0,1],

b
%(z,(}) ’f(a:O j=0,....,n—1, z€[0,1].

Let us consider the values fii = f(tij) — b(ti;). We claim that there exists a unique
spline s2 , € Sg, »s Which satisfies the interpolation conditions

Smun(tij) = fij.
Indeed, let us consider the corresponding homogeneous problem s, . (;;) =0, ¢ =

LM, j=1,...,N.
Lemma 2.3 gives a representation of s9,  in the form

M~-1N-1

0 _ B..
Sm'n — Z Z QUBU.

i=0 j=0

Then 0 = sm n(tu) = Z‘_O Z =0 a,,B,J (tu) = aOOBOO(tll) Since t;; € 04, C
Dgg, we have Boo(tu) # 0 and Ozoo 0.

Further, 0= sm n(t12 21—0 z i=0 az] ij (t12) = aOOBOO(tl2)+QOIBOl (t12)
= 0+ apy Bo1(t12), hence ag; = 0. We contmue the process and finally get a diago-
nal matrix with B;_ j_;(t;;) sitting in the diagonal. These numbers are different
from zero since ¢;; € U;; C D;_; j—;. Hence the homogeneous problem has only the
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trivial zero solution. This means that the non-homogenous problem has a unique
solution. We assert that s(z,y) = %, .(z,y) + b(x,y) is a solution of the original
interpolation problem. Indeed,

(m,n)
s (z,y) = () (@) FH ()

(m,n)
= (s?m,n)) (l', y) + 0 . Ci,j
when (z,y) € 05, i=1,...,M, j=1,...,N. Hence s(z,y) € Sy n. Besides,
s(ti;) = s n(ti) + b(ti) = f(tij) — blti;) + b(ti;) = f(¢:;5)

for i = 1,...,M, j = 1,...,N. Obviously, s(z,y) satisfies also the matching
conditions along the segments [0,y], 0 < y < 1, and [z,0], 0 < < 1, since
80m.m) (€:y) was chosen to satisfy the zero conditions.

Let us suppose that there are two solutions of the interpolation problem:
s1(z,y) and sy(z,y). If s(z,y) = si(z,y) — s1(z,y), then s satisfies the zero
boundary conditions (on the segments). Hence s € S, , and from the condi-
tion s(t;;) =0, i=1,...,M,j=1,...,N, we get that s = 0. The uniqueness is
proved.

4. PARTICULAR CASES

4.1. AN ESTIMATE OF THE ERROR IN THE CASE
(m,n) = (1,1) AND t;; = (i/M, j/N)

We analyse further the interpolating spline in case of low orders m, n.
Consider the rectangular net of points

z;=1/M, y;=j/N,i=1,...,M, j=1,...,N.

Let us denote

A-”-'y - f(:v,y)+f(0,0)—f(:z:,0) —f(o)y)7

Aij = flzi,y;) + fleimt,yi-1) — f(@i,y5-1) — f(@im1,95),
Ay = flzio,y) + f(0,y5-1) = f(@i-1,¥5-1) — £(0,9),

Ay = f(z,yj-1)+ f(®i-1,0) = f(2,0) — f(ziz1,yj-1),
Az = flz,y)+ f(@io1,y5-1) = f(2,¥5-1) — f(zi-1,9).

We shall approximate the function f(z,y) by interpolating (1,1)-splines, that
is, by functions of the form

s(f,2,3) = £(@,0) + £(0,3) — £(0,0) + /0 ’ /0 " eu,v) dudv,
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where
C(u,U):{C,‘j f07‘ (u,v)eD,-j, i=1,...,ﬁ{[, j=1,...,N}

and the constants {c;;} :‘i . jli , are chosen to satisfy the interpolating conditions

s(f,zi,y;) = f(zi,y;), i=1,...,M, j=1,...,N.

We shall derive an expression for the error of approximation in terms of modulus
of continuity w(f,d;,d;). Recall that

w(f,61,8) = sup sup |f(z+ hy,y+ hs) — f(z,¥)|.
|h1|<61 |h2|<é2

In order to estimate the error, we need the values of {ci;}, which we calculate
below using the above-mentioned interpolatory conditions. By the first interpola-
tory condition we have

o] 71
s(f,xl,yl)=f(x1,o>+f(o,yl>—f<o,0)+/o /0 e dudy = fz1,y1),

1 A
which is easily reduced to Ay; = heyp, where h = UN Hence ¢;; = —]i—l From
the interpolatory conditions at the point (z1,y,) we get

1 Y T 2
f(fb‘l,yz)=f($1,0)+f(0,y2)—f(0,0)+/(; /0 cududv+/0 /: 12 du dv.

To find c;2, we use the above formula and the value of ¢;;, just found. We obtain
A . A ] - . M
C1a2 = Y Similarly, we get that clj = -7”— forj = 1,...,N. We continue with

the calculations of ¢o; up to ¢c;n and so on, till eprn. In this way , we get that

Ais
cij = —h‘l,z'=1,...,M,j=1,...,N.

Now we are prepared to estimate the error. Let us suppose that the point
(z,y) is in O;;. Consider the identity

fz,9) - s(frzy) = f@y)+£0,0) = f(z,0) - £(0,4) — /0 ’ /0 " efu,v) du dv

z ry
= A,,,.y—/ / c(u,v) dudv.
o Jo

Let us denote, respectively:

- by hy — the area of the rectangle with vertices (z1,y), (0,y;j-1), (z1,5j-1)
and (0,y);

- by hs — the area of the rectangle with vertices (z,y;), (zi-1,0), (z,0) and
(Ti-1,31);

- by h3 — the area of the rectangle with vertices (z,y), (zi-1, yj-1), (z,yj-1)
and (xi—l ) y)
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Then

i—1

r pry j—1
/ / c(u,v)dudv = hz chz + hy Z crj + heo Zc,; + hscij
o Jo k=1 =1

1
1 j
h1 ha h3
AN AL+ 25 A+ A
Akl + h kzr;l kj + h lg; 1+ 1]

i—1
h
k=1 1l=1

=

Hence

i-1
h
f(z,y) = s(fiz,y) = A1+A2+A3_"’_ZAkJ 22&1—73&'1'
=1

= —% [f(@i-1,5) + f(O,9) = f(zi-1,9) — f(0,95)] + (1 - Eh—) Ay

2 o 50) + 50,0 = F,0) -~ S+ (1= 32 ) Aot 85 = 28

Using the properties of the modulus of continuity, we obtain the estimate

) - sthal <2 [Bon (1) + (1= 3 o (105

—'—;lzw“(f, ’ )'{‘(1—'%)“)1,1 (fy%al)"'zwl,l (f!%a%/’)]

In this simple case we can give explicitely the Lagrangian basis for the inter-
polation problem

0%s
S?,l ={ s: W(%y)=cz‘j, (z,y) € 0;;,
i=1,...,.M, 5=1,...,N, s(0,y) =0, s(z,0) = 0}.

More precisely , we construct functions 8,,(z,y) € Sy, such that

8pq (XI}%) =06l , k=1,...,M, 1=1,...,N.

(Obviously, {épq} p=1 _1 are linearly independent and since their number is M.N,
they indeed form a basis of SY,.) We seek d,,(z,y) in the form

1 1
e = [ [ @050 - ve(t)dean,

where c(t,v) = ¢ for (t,v) € Oy, i=1,...,.M,j=1,...,N.
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We derive that

((MN (z-221) (y— 524) | (z,y) € Oy,
MN y_gﬁl' y (x7y)€Dp+l,q,

(

(
Opq(z,y) = ¢ MN (z - B

(

| 0, elsewhere.

The calculation of d,, is straightforward and we omit it here. Instead, we show
how to compute the basic functions in the more complicated case (m,n) = (1, 2).

Having computed d,,, one can give explicitely the solution of the interpolation
problem as

M N
s(f,2,9) = F(0,y) + f(2,0) = £(0,0) + D _ Y fltpg)dpe(,9)-

p:]_ q=1

4.2. THE CASE (m,n) = (1,2) AND ¢;; = (i/M, j/N)

Here we construct the Lagrangian basic functions dpe(2,y) € S7,. By defini-
tion, they satisfy the conditions

!
8pq (%,—N)zé,,kéq,,k=l,...,M,l=1,...,N. (4.1)

We seek dpq(z,y) in the form

1 41
dpe(Z,y) = ‘/0 /0 (z - t)g_(y - v)ﬂ_c(t,v) dt dv,

where ¢(t,v) = ¢;; for (t,v) € 0y, i=1,...,.M,j=1,...,N.
Our next purpose is to calculate the constants c;;. We will determine them

using the interpolatory conditions (4.1).

1 1
Assume first that p > 1, ¢ > 1. Using the condition 0 = §,4 (-—M, :7\7)’ we get

1

o = [ [ (1) (3-2) cwoaa

M /4 0 1N /4 1
= Cll/o (J_Vf_t) dt/(; (]—V-—'U) dv:cllW)
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1 1

I —]\7) = (0 gives

M /4 1/N
o= [ G () e
1/M 1 0 2/1\
+ / (—-t) dt/ (-—-—v)dvc + ..
; i v \N 12
M /4 0 I/N !
+ vl dt/ (——-—-v)dvcl.
/o (M ) (t-1y/n \N :

For | = 2 we get 0 = a;.0+a2.c12 and hence ¢;12 = 0. Analogously, we find that
c13=0,...,ep=0forl=1,...,N. If p> 2, in the same manner we show that
ey =0 forl =1,...,N. Moreover , for all k < p, we have ciy =0 for I =1,..., N.
Quite analogously, we get the same for all/ < gand k = 1,..., M. In the case p = 1
(or ¢ = 1) these null columns (rows) are missing.

Assumethatp=1,...,M, gq=1,...,N.From the equality 1 = dp, (%, -1%)

i.e., cy1 = 0. Moreover, the condition dp, (

we get

p/M 0 a/N 1

P q 1 1
l=c¢ / — =1 dt/ — —v) dv = Cpg —,
“Jo-nm (3 -) (a-1)/N (v-2) "M 2N?

P g
ie., cpy = 2MN2. Letnow k > pand l > q, (k- p)* + (I — ¢)* # 0. Then

k1
0 = O (H’"ﬁ)

ii /UM (k )Od LY
= Cii — =t t/ (— - 'v) v
s = iy \ M G-1/N \N

j=q i=p

L&y 1 (2-2j+1)
= 2Dy T

j=q i=p

We get
-1 k

=~ > cij(2l—- 23+1)+Zc,, . (4.2)

j=q i=p i=p
If the upper index is less than the lower one in any of the sums, we interprete this
sum as equal to zero. Forl=¢, k=p+1,..., M, we have

k—1
Chq = —-Zciq. (4.3)
i=p
Fork=p l=q+1,...,N,
-1
=S cpi(2—2j +1). (4.4)
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We put in (4.3) k = p+ 1 and get ¢pi1 4 = ~Cpg = —2MN? For k = p+ 2 :
Cpi2,g = —(Cpg +Cpt1,4) =0, for k=p+3: cpy3q = —(Cpg + Cpi1,g + Cprag) =0,
and soon, ¢, =0for k=p+2,..., M.

From (4.4) for I = ¢ + 1 we have that ¢, 41 = —3cp, = ~6M N2, It can be
shown by induction that ¢y = (—1)"%4c,, = (-1)'"98MN? for l = ¢+ 2,...,N.
Indeed, from (4.4) for I = q + 2,

Cpatz = ~[5¢pq + 3(=3cpg)] = —(1)7+*%4cy,.

Let us suppose that the assertion holds for every natural number from (g + 2) till
(I—1). Then we shall prove that it is true also for { = q+2n. The case | = g+ 2n+1
holds analogously. To this purpose, we use (4.4):

Cpi = Cpgtan = —[(4n + 1)cpg + (4n — 1)cp g1 + (4n — 3)epgya + -+ + 3cpi—1]

= —Cpg[=34+54-T74+ -+ (4n—-3)4+ (4n — 1).3+ (4n + 1)]
= dcpy = —(1)74cy, = —(1)!7I8M N2,

By induction (on I) we shall show that ¢y = —¢py14, ey =0fork=p+2,..., M
and | = q,...,N. The assertion holds for I = q. Let it hold for every natural
number from ¢ tlll (I = 1). Then, by (4.2),

-1
ekt = | Y (Cpj + Cpi1,j) (2l — 25 + 1)
Jj=q

-1 k-1

k—1
+3° % ey 2]+1)+Zczl ==Y cu,

j=q i=p+2 i=p i=p

i.e., we get a relation similar to (4.3). Putting in it k = p+ 1, we get cp+11 = —cpi.
The substitution k¥ = p + 2 gives ¢,42: = 0 and so on , we get canp = 0. The
assertion is proved.

So we have calculated {c;;};2 ;2 for &,q(z,y).

Now we are ready to give the explicite form of dp,(z,y). Let (z,y) € Op.
Having in mind that ¢(t,v) = ¢;; for (z,y) € O;; and ¢;; = 0 for some (¢, j), we get

-1 k—1 i/M jIN
le) = Y ey [ <w—t)°dt/(, (y—v)' do

j=q i=p (7' l)/!” j—-1)/N
=1 z iIN

+ ch,-/ (x—t)odt[ (y —v) dv
j=q (k—1)/M (j-1)/N
k—{ i/M v

+ Zcu / (x —t)° dt/ (y —v) dv
i=p (i-1)/M (I-1)/N
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z y
+ csz (:c—t)odt/ (y — v)! dv
(k—1)/M (1-1)/N

- Ty L (-1
T L2 T YN IN
j=q i=p
{—1 .
1 k-1 27 —1
+ ;cw‘ﬁ(‘“"—ﬁ")( -4
k=1

1 [ -1\2 k—1
b g (v-F) +o (=- %)

i=p

We will consider various cases for k and [ :
1. (z,y) € Opg, e, k=p, I =¢q:

_ p—1\1/ ¢-1 2_ 9 p—l) g—-1\°
6pe(Z,Y) = Cpq (m—- i )z(y N ) =MN (z 7 y-x ) -

2. (z,y) € Opgt1,ie, k=p, =g+ 1

p-1\ 1/ 2-1 p—1\1/ g2
(2 y)‘c""("‘"_M_)'ﬁ(y“ oN )”""’“ ("’_ )2(y_N)

— of . p—1\ (q+1 g 1
o (=221 (S5 o+ 1),

3. (z, y) € Opt1,q

1 -1\ Pyl g-1)°
bo(@9) = cpaggy (=15~ ) +era (o= 37) 305

2
w2y 1LY (P11
-MN( N) (M x).

4. (z,y) € Optr,g41:

1 2q—-1 py 1 2q -1
imten) = emigy (1= 2557 e (== ) (v = 57

O RS B )
q

_ 2 (P+1 g+1 _ e v
3MN(M ”)(N "’)( N 3N)'

5. (x,y) € Ogy, for k<p—1lorl<gq-1: Let, for instance, k < p— 1. Then

1\ 1 27 —1
‘5pq($,y) Clc] (37 - —'—> j_V- ( - —]2'N—)
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+ Cr | T — k-1
ki 7i
since ¢xj =0 for j =gq,...,L.
6. (z,y) € Opy, for 1 > g+ 2:

-1 _ )
p—1\ 1 2 -1 p—1)\1 (-1
Pra(@:0) = 2., (’”" M )N( T TaN )*"”‘ (‘”“M_)é( “N_)
Jj=q

-1 . 2
B p—1 A %=1\ 1/ I-1
"(’" M )[ZCWN(” on ) P\Y "N ) |

J=q

since cpg = 2MN?, ¢p 441 = —6MN?, ¢, 04y = (—~1)!8 M N2, the second multiplier
A is equal to

2
IMN {y _da-l g (y - 214’—5) +4B] +AMN?(~1)!0 (y - t_l) ,

2N 2N N
where
_ 2(¢g+2)-1 2(g+3) -1 I—g—1 20-1)-1
B=y oN TVt Ty — oot V=778 )
ie.,

A=4MN[(%}-—y) +2B}.

We will calculate B first for the case of even summands, i.e., when [ —1— (g+2)+1 =
{ —q—2is even. Then (I — ¢q) is even and

l—qg—2
2N

B=5%,—[—(“2)+(q+3)~(q+4)+---—(l—2)+(1—1)}=

If (I — q) is odd, then

[l-1-¢-2 2(-1)—1] l+q
B= |y +y"“—'7r“}—[ =t

and thus

b= 0 (222 (4= 1) (£ ) e

7. (z,y) € Opy1y, for 1 > g+ 2:



N 1 _l——l 2+ (___’L)l _1—12
“PoM N P \T T ) 2 N )

Since cpi1,; = —cpj for j =1,..., N, then

bpa(T,y) = (p+1 ) {Zc"’N (y—g%%_lj +cp,%(y— l_;[_l)z}

and as in item 6.,

= (—1)—9+t 2 gt_l__ _l_—_l L_
Srala,) = (-1 tann? (22 -2 ) (y = 22 (5 - ).

8. (z,y) € Oy, for k > p+2 and | > g: We represent p, in the form

-1 1 2]_1 -1 k-1 2j__1
Z(cpﬁcpﬂvi)m( ) 2 2 C"MN( _W)

j=q Jj=q i=p+2

= 1 -1 k-1\1 [-1)\2
+ | (cpj + Cpi1,5) + Z Cil oM y——ﬁ- +Ckl I—T 3 y"—'N—‘

i=p+42
and conclude that d,,(z,y) = 0 in this case. Therefore, we arrive at the following
expressions for 6,4(z,y):

MN? (p;}l 18) (y - g%)zfor (z,y) € Opt1,45
3MN? (;g _ Pﬂ;l) (q;\-rl _1) (y— % + 3;) for (z,y) € Oy 441;
i (21 2) (152 4) (- + ) o o) €

_y-atigpane [ P2t =N
(-1) 4MN(:1: M)( N)(N y

for (z,y) € Op, N212>q+2;

oo (52 6-132) (-

for (z,y) € Opp1,4, N212g+2;

0, elsewhere.
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This is also true for p = M and ¢ = N, but in these cases we consider only such
indices that are less than or equal to M or N, respectively.

Consider the operator I, {f], which puts in correspondence to a function f its
interpolating (m, n)-spline at a fixed set of nodes {¢,,}. In the (1,2)-case we have
constructed the Lagrangian basis and thus the interpolating spline I7 5[f] can be
represented in the form

I o[ f](2,y) Zzéqu(tpq)

p=1 g=1

Thus, for the norm ||I,,,|| of this operator in the space C(G)° of continuous func-
tions bounded by 1 in the unit square G, we get

([mnll = sup ”szqu (tpg)ll < ZZ”‘SPQ(:’; -
EC(G)o p=1 q._ p=1 q=1

Bounds of the norm [|[,,,|| are useful for estimating the error of approximation.
That is why we give below such estimates in the case of the most frequently used
norms. For simplicity of notation, we will omit the indices mn of I,,, and also we

will write ) instead of Zﬁil Z:’:I.
For every spline s we have

W =1fllx = llf=s+Is=If|lx <I|If—sllx +llewosx|f = slic.

< M = sl T+ |20 —x)-

In the case X = L; we get the following bounds:

9
“‘qu”lq 3MN(N (I+1) f0r15P<M,ISQ<N,
N-g+1
= —— <
HJMQHLI 3A'IN for 1 —_ p < M’
6o, = —— for 1 <p< M
pN Ll—3MN r _._p )
Ipewllzy = —
MNIL: = 63N

Therefore,

N 1 11 N
ZZ”(SPQHLL: 3 <l—m) (1+-A—I—N'5) ~§’

r=1g=1

when M and N tend to infinity.
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Hence

N 1 11 .
If=1fllz, < [Te"(l“m) (1+N“F2')+1]Ef ;

where E2° is the best L.o-approximation of f by (1,2)-splines.
In the case X = L, we calculate ||0pq]|r,. For 1 <p< M, 1< g< N we get

ol = 32 (N -0+ 3).

Besides, for 1 < g < N,

8 3
2 _ - _ el
10mallz, = gz (N g+ 2) ’

for1<p< M,

1
15MN'

2
opnlIZ, = BN

and  |ldmwllZ, =

Then
Z”‘qull% _ (N+2)(2-1/M) 2N

~

45 45
Using the inequality z; + - - + z,, < v/n(z{ + -+ + 22), we find the estimate

S Wpallze < /MN Y [yl = VT = 1/2)(N +2)N \/4-35
~ \/—MN\/—% (as M, N — o0).

Hence

1llze < Y 18pqllz. < VIM —172)(N + 2)N\/;2-; . \/HN\/%,

I = Iflls, < (\/<M S TRICEy 1) By

Let X = L. Using that ||0p,llz.. =1 we get [|If]|lL., <> 1.1 = MN. Hence

HlLwnre < MN

and
If = Iflle. < (MN +1) Ep.
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We are going to use the estimate for ) ||6,4/17, to get a better estimate forl|f —
IfllL,. Let xpq(z,y) be the characteristic function of the support of §,,(,y). Then

M flle, = ”Z‘Spquf(tpq)“h < z 18pa Xpa f (tpg)llL,

< S salalipalize < (3 0osaliz) " (3 theealiz,)

Since ) )
q —
IxpallZ, = i (1 - _]\T-)

for1<p<M,1<qg<N and

1 g-—1
lIxnmqll7, = Wi <1 - T) 5

we get
1/2 1\ N+1
2 o — —_—
(Z "qu”Lz) = \/(2 - M) 5

Then
(2~ 1/M)\/(N +1)(N +2) 2
I = s I < .y N
“ “Loo—*lll Ilf”lli)Sl ” f”Ll — 3\/m 3\/1—6

when M and N tend to infinity. Hence

Nf=Ifllz, < ((2 - I/M)‘Q%J’ DV+2) | 1) EP.

4.3. THE CASE (m,n) = (2,2) AND ¢;; = (¢/M,j/N)

We seek 6,4(z,y) of the form

1 1
5pa(z,y) = /0 /0 (z = )L (y — v)L c(t, v) dt dv,

where c(t,v) = ¢;; for (t,v) € Oy, i=1,...,M,j =1,...,N. The constants c;;
are determined by the interpolatory conditions

6pq(t1j)=6p15qJ, izl,...,ﬂ/f,jzl,...,N.
As in the previous section 4.2, we get

Cpg = AM*N?, cpi1,q = —3Cpq, Chg = (=1)¥Pdc,, fork>p+2.
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Moreover,
Ch,g+1 = —3Ckq and cpy = (~1)’_"4ckq for k > p+ 2.

Using the above expressions for ¢;;, one can obtain that é,,(z,y) is equal to

M2N? (2 - P22 (yact 2if(x ) € O,
7 Yy N 'Y Py

1 1 -1\?
3M2N? (’ii- - m) (x - % + -) (y = 5’7\-}—) if (2,y) € Opi.q;

3M2N2 p—l 2 Q+1 q 1 . . )
37“—M“' '7\,——3/ y-N‘*"éN if (z,y) € p.g+1s

ay2 (PEL _p L (fetl _a. 1
9MN(M :L')(:z: M+3M)(N v)(v- %+ ax

if (z,y) € Opg1,g41;

(1)1 9+ 4 M2 N2 x_g;l : y_l_:...l. i_y
M N N

if (z,y) € Opt, q+2 <1< N;

(1) T+H112 M2 N? (%1 - :1:) (:c -

=\
+
2|~
N—’
N
Ung
|
z‘ |
[a—
SN———’
N
N
|
N—’

if(x)y) € Dp+1,h Q+2 ..<..IS N’

(=1)%PH14p2 N2 (% - x) (:r: — kﬂ;l) (y - %)2

if(x:y)emkqap+2SkSM;

k-1 k +1 1
_1\k—p+1 2 Ar2 _ k-1 LA qgri _q ., 1
(1) 12M*N (m i )(M :z:)( N y) (y N+3N)

if (z,y) € Ok q41, p+2< k< M;

o (-2 (3-2) - ()

if (z,y) €Ok, p+2<k<M, qg+2<I<N.
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Some technical calculations show that

M N
MN
S0 bpalles = g (M7 + M —1) (V2 4 N = 1) ~ 2N

p=1 g=1

when M and N tend to infinity.

Besides,
M N
21 21
= M? 4 2M - = aN — 22 .
ZZ“ PQ”L2 2251WN ( + 3 ) (N N 5 )
p=1 g=1
Hence
M N - g
ZZ I6pqllr, < \/ M2 +2M — —) (N2 + 2N — —8.) EMN
r=1 g=1

It is easy to see that

M N
S 6pglle,, = MN.

p=1¢=1

The same way as in Section 4.2, one can get

2 00
1f =1 £l < [QMN (M +M - 1) (N +N—1)+l] Ef,

where E?° is the best Lo, approximation of f with (2, 2)-splines,

Wf=1flle, < [185\/(M2 2M — 281) (N2+2N— %) +1
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