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In the paper the important question on existence of strong M-bases is considered. A
new kind resolution of identity is introduced. Based on this resolution, necessary and
sufficient conditions for existence of strong M-bases are determined. As a consequence,
the existence of strong M-bases in certain Banach spaces is shown.
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1. INTRODUCTION

Strong M-bases are natural generalization of Schauder bases in separable Ba-
nach spaces. It is known that not every separable Banach space possesses a
Schauder basis. In 1994, Terenzi proved that every separable Banach space has
a strong M-basis ([10]). The concept of strong M-basis was transfered into non-
separable Banach spaces and its properties were studied by G. Alexandrov ([1]).
The existence of strong M-basis in a nonseparable Banach space X leads to more
detailed information about the space. For example, it implies the existence of an
equivalent local uniformly rotund norm on X' ([2]), which has a considerable impact
on the geometry and topology of the space. A classical example of a Banach space
which possesses a strong \M-basis is the space C[0, a] of all continuous functions on
the interval [0.a] ([1]).



In this paper we introduce a new kind resolution on a Banach space. Using
this resolution, we determine necessary and sufficient conditions for the existence
of strong M-bases in nonseparable Banach spaces and apply them to obtain the
existence of strong M-bases in certain classes of nonseparable Banach spaces. The
question for the existence of strong M-bases is considered also by Deba P. Sinha
(19]). Note that our results arc more gencral and they are announced earlier, on an
International Colloguium ([3]).

Let us mention some basic notations used throughout the paper. If a is an
ordinal, | a | represents its cardinal number. If 4 is a set, | A | denotes its cardinal
number. w is the first infinite ordinal. The density character of a topological space
X (dens X) is defined as the first cardinal number A such that there is a dense
subset A of X with | 4 |= A If F is a subset of a Banach space X, linf" is the
linear span of F' and [F] denotes the norm-closed linear span of F. Throughout
the paper X denotes a Banach space and X* denotes its dual space. Recall that a
Markushevich basis (M-basis) of X is a biorthogonal system {x;. fi}iesr C X x X~
for which [{z;}ies] = X and {fi}ier is total (i.c. fi{z) = 0 for all i € I implies
x = 0). An M-basis of X is said to be a strong M-basis of X' if

every x € .X belongs to [{ fi(z)x; }icr]. (1.1)

A linear operator P : X — X on a Banach space X is said to be a projection on .\
if P2 = P,. The concept Projectional Resolution of Identity (PRI) is well studied
and PRI’s are constructed on some classes of Banach spaces ([5.6.11.12]). A PRI
on X is a collection {P, : w < a < u} of continuous projections of .X into X', where
i is the smallest ordinal with cardinality | g |= dens.X and for every a € [w, p] the
following is satisfled:

(i) PaPs = P3Pa = Fmin(a,3) for every J € [w=/l]§

(i) P, = Idx:

(i) densP,(X) <|a|;

(iv) there exists a constant C' such that || P3 ||[< C for all 3 € [w, ul;

(v) U{P341(X) : w < 3 < a} is the norm-dense in Py ().
Note that the classical concept PRI requires [|Py|| = 1 for all & € [w,#]. but for
the present purpose it is sufficient to have all the projections bounded by the same
constant. By [6, p.236], if {P, :w < a < pu}isaPRIon X with C =1, then

every £€X belongs to [{P.a} U {(Ps41 — P3)az: w <3 < v}l (1.2)

It is not difficult to see that (1.2) is valid also for a PRI with C' # 1. Condition
(1.2) plays a basic role for the results in the next section. That is why. a new kind
resolution based on this condition is introduced there.

At the end of this section we recall the definitions of the spaces used in
Section 3. A Banach space X is said to be Weakly Lindeldf Determined { WLD) if
there exist a set I and a limited linear one-to-one operator 7 : X* — [X(I), which
is weak-pointwise continuous. A Banach space X is called Weakly Countably De-
termined (WCD) if there exists a countable collection {K,, : n > 1} of w*-compact
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subsets of X'** such that for every r € X and every v € X** Y .Y there exists
an ng such that ¥ € K, and v ¢ K,,,. A Banach space X is said to be Weakly
Compactly Generated (WCG) if there exists a weakly compact subset 11 of X that
spans a dense linear subspace in X. For any set [, (I) denotes the subset of
[0,1}% consisting of all functions {z(i) : i € I} such that z(i) = 0 except for a
countable number of i’s. Let K be a compact set. Then K is said to be: Eberlein
compact if K is homeomorphic to a weakly compact subset of some Banach space
X: Gul'ko compact if C(K) is weakly countably determined: Corson compact if
it is homeomorphic to a compact subset of $° (1) for some I Valdivia compact if
there exist a set I and a subset K7 of 0, 1]’ such that K is homeomorphic to K,
and Ko N> (1) is dense in K.

2. NECESSARY AND SUFFICIENT CONDITIONS
FOR THE EXISTENCE OF STRONG M-BASES

Since condition (1.2) is important for our main theorems, we replace some of
the conditions in PRI's definition and consider the following kind of resolution:

Definition 2.1. Let X be a Banach space and v be an ordinal with cardinal-
ity | v [= densX. A Semi-projectional Resolution of Identity (SPRI) on X is a
collection {F, : w < a < v} of continuous projections of .\’ into X such that:

(i) PaPs3 = P3Py = Ppinia.3 forevery a,8 € [w,v];
(i) P, = Idy:
(iii) densP,(X) < densX. Ya € [w,v);
(iv) every r€X belongs to [{P.z} U {(Psv) — P3)z: w <3< v}

As was observed above, every PRI on X satisfies (1.2) and hence it is a SPRI on
. One could expect that not every SPRI is a PRI, but a concrete example is not
known vet.

The following theorem determines conditions of a resolution on a Banach space
X, implying existence of a strong M-basis on X

Theorem 2.2. Let v be an arbitrary ordinal number and let {(Py:w<ac<
v} be a collection of continuous projections of X into X', satisfying the following
conditions:

(1) PyP3; = P3P, = anz(a.d)r Va, 3 € ["*"%V):-

(ii) each z€ X belongs to [{P.x} U{(Pss1 — P3)z: w< F < v}l
If there exist strong M-bases of P,,(.X) and of all (Pay1 — Pa)(X), 0 € [w,v), then
the space X has a strong M-basis.



Proof. Denote Ty = P. and T, = P,y — P, for a € [w.v). For every
a € {0} U w,v) let {22, f@}ics, be a strong M-basis of T, (X). For each a €
{0}U[w, ) and each i € I, define the functional Fi* € X" by the formula F(r} =
ff(Tax). We will prove that the system {9, F Yac{oyulew).icl, 1S & strong M-
basis of X. Condition (i) implies that the bounded operators T, a € {0} U [w,v).
are projections which satisfy

TO'TB = Oy Vo # "33 (21)

where O is the null operator of X*. Thus

; 1, fa=j3andi=j,
7 (a?) = ' . !
J 0, otherwise,

which proves the biorthogonality.

Fix now an arbitrary z in X. For every a € {0} U [w, ).
T,z € [{f{‘(TQ:zt);r?}ieIn}.

By condition (ii},
rE [{TCI:E}QE{O}U[;#.U)]‘ (22}

Therefore
T € [{Fia(l")m?”ae{o}u{u,u),iela‘
It follows from (2.3) that the family {F®}ae(0}uiwwicr, is total. 0
By the result of Terenzi ([10]), asserting that every separable Banach space

possesses a strong M-basis, the next corollary is an obvious consequence of Theorem
2.2.

Corollary 2.3. Let {P, : w < a < v} satisfy the assumptions of Theorem
2.2. If the subspaces P,(X) and (Pys1 — Pa)(X), a € [w,v), are separable, then
there exists a strong M-basis of X.

Note that for some classes of Banach spaces the existence of a PRI implies the
existence of a resolution satisfying the assumptions of the above corollary. Namely.
by [6, p. 236], if every element of a given class ? of Banach spaces admits a PRI
{P.} such that all (Pay; — Pa)(X) belong to P, then for a given X € P with
dens X =| p | there exists a collection {@- : w < v < p} of projections of X" into
X satisfying the SPRI's properties and such that Q. (X) and all (Q,+1 - Q~{X)
are separable. Note that the same assertion can be proved in case the assumption
"PRI" is replaced by "SPRI". The next theorem gives sufficient conditions for
the existence of a strong M-basis in each element of a given class of nonseparable
Banach spaces.
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Theorem 2.4. Let P be a class of Banach spaces such that for every X € P
there exists a SPRI {P, : w < a < v} on X such that (Pay; — Po)(X) € P for
every a € [w.v). Then each X € P has a strong M-basis.

Proof. We proceed by transfinite induction on the density character of X.
[f dens X' = [w|. i.e. if X is a separable spacc. then X has a strong M-basis
([10]). Let now dens .X' > |w| and let us assume that every space Z € P with
dens Z < dens X has a strong M-basis. Let {P, : w < a < v} be a SPRI on X
such that (Py41 — P, )(X) € P for every a € [w,v). Then all the subspaces P,(X)
and (Pa+1 ~Po)(X), a € [w.v), have a strong M-basis by the induction hypothesis.
Now, applying Theorem 2.2, we obtain that X has a strong M-basis. [J

An obvious consequence of the above theorem is the following

Corollary 2.5. Let P be a class of Banach spaces such that:

1} P is a hereditary class (i.e. if X € P and Y is a subspace of X, then Y
also belongs to P):

2) each X € P admits a SPRI{P, :w < a < pu}.
Then each X € P has a strong M-basis.

Theorem 2.2 gives sufficient conditions for the existence of strong M-bases. It
turns out that properties (2.1) and (2.2) of the bounded projections 7, are also
connected with necessary conditions for the existence of strong M-bases:

Theorem 2.6. A Banach space X has a strong M-basis if and only if there
exist a set of ordinals J and a family {T,}acy of continuous projections of X into
X. which satisfy the following conditions:

(i) T,T5 is the null operator on X for every a # 3;
(i) every z€ X belongs to the norm-closed linear span of {Tot}acy:
(i) there exists a strong M-basis in To(X) for every a € J.

Proof. 1t follows as in the proof of Theorem 2.2 that the existence of bounded
projections {7 : X' — X'}.cy, satisfying (i)-(iii), implies the existence of a strong
M-basis of .X. Vice-versa, let {z;, f;};cs be a strong M-basis of X. Since every set
can be well ordered [7]. order I and let v be the ordinal number of this order. For
every a € [0,v) define the operator T,, : X — X by Tu(z) = fu(z)za, Vz € X.
Then the family {T4}ac(0.,) satisfies conditions (i)-(iii). O

Note that the above theorem remains valid if condition (iii) is replaced by

(117} all To(X') are separable/finite dimensional.

[t would be interesting to find out whether there exists a Banach space which
possesses a strong 1 -basis and does not possess a PRI In case such a space exists.
it would mean that the resolution used in the above Theorem 2.6 is more proper
than PRI when strong A/-bases are considered.
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3. EXISTENCE OF STRONG M-BASES IN CERTAIN CLASSES
OF NONSEPARABLE BANACH SPACES

Since every PRI on a Banach space .X' is a SPRI on .Y, Corollary 2.5 remains
valid if PRI is used instead of SPRI. Based on this corollary, the existence of strong
M-bases in some classes of Banach spaces is obtained.

Proposition 3.1. If X is either a WLD, a WCD or a WCG-space, then X
has a strong M-basis.

Proof. Tt is known that the class of all WLD-Banach spaces is hereditary and
everv WLD-Banach space admits a PRI ([4]). Thus, Corollary 2.5 implies that
every WLD-Banach space has a strong M-basis. If X is a WCD or WCG-space.
then X is a WLD-space ([4]) and therefore has a strong M-basis. [

Proposition 3.2, If K is a compact either of Valdivia. of Eberlein, of Gulko
or of Corson, then there exists a strong M-basis of the space C(K).

Proof. Let K be a Valdivia compact, {Ih : w < a < 1} be the PRI on
C(K). constructed in [6, p.256], and P be the class of all spaces C'(V7), where 17's
are Valdivia compacts. Observe that all subspaces (P41 — Pa)(C(K)) from this
construction belong to P. Therefore, by Theorem 2.4, there exists a strong M-basis
of C(K). The rest follows trivially, keeping in mind that if A" is a compact of
Eberlein, Gul'ko or Corson, then K is a compact of Valdivia ([6, p.253]). O

As it is well-known, there exists an orthonormal basis in every separable Hilbert
space. Concerning nonscparable Hilbert spaces, let us mention. for example. the
space of all almost periodic functions of Bor and the set { e}, which is a complete
orthonormal system for this space ([8]). The next proposition proves the existence
of a strong M-basis in every nonseparable Hilbert space.

Proposition 3.3. Every Hilbert space has a strong M-basis.

Proof. Let H be a Hilbert space and p be the smallest ordinal with | p |=
densX. Fix an arbitrary dense subset {z3}1<3<, in H. For every a € [w, p] let
Lo = [{z3}35<a] and P, be the orthogonal projectional operator on L,. Then the
family {Pa}agfw,) 15 @ PRI on H. Finally, apply Corollary 2.5 to the class of all
Hilbert spaces. [
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