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For the wave equation we study boundary value problems, stated by Protter in 1952,
as some three-dimensional analogues of Darboux problems on the plane. It is known
that Protter's problems are not well posed and the solution may have singularity at the
vertex O of a characteristic cone, which is a part of the domain’s boundary dQ. It is
shown that for n in N there exists a right-hand side smooth function from C™(€), for
which the corresponding unique generalized solution belongs to C™(Q\0), but it has
a strong power-type singularity. It is isolated at the vertex O and does not propagate
along the cone. The present article gives some necessary and sufficient conditions for
the existence of a fixed order singularity. It states some exact a priori estimates for the
solution.
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1. INTRODUCTION

We discuss some boundary value problems for the wave equation
Dlt = 'u:ri;rl -+ 'ngx.z - uit - f (1.1)

in a simply connected domain 2 C R*. The domain

Q= {(z1.22,8): 0<t<1/2, t < yJai+ 23 <1—1}
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is bounded by two characteristic cones of (1.1)

Sy = {(zr,@0,t): 0<t<1/2, (Jai+23=1-t},
Sy = {(z1.a0,t): 0<t<1/2, \Jai+23 =1t}

and the circle Sg = {(z;.z2,t) : t = 0, 27 + 23 < 1} centered at the origin
0(0,0,0). The following three-dimensional analogues of the plane Darboux prob-
lems are stated by M. Protter [27):

Problems P1 and P2. To find a solution of the wave equation (1.1) in 0,
which satisfies one of the following boundary conditions:

P1 uls, =0 and wu|s, =0;

P2 uyls, =0 and wu|s, =0.

The corresponding adjoint problems are:

Problems P1* and P2*. To find a solution of the wave equation (1.1) in 2,
which satisfies the corresponding boundary conditions:

P1* uls, =0 and uls, =0;

P2 utls, =0 and wuls, =0.

For the recent known results concerning Protter’s problems see [25] and refer-
ences therein. For further publications in this area see [1, 2, 8, 13, 16, 19, 20].

Substituting the boundary condition on Sy by [u¢ + aul|s, = 0, one obtains
Problem P,, for which we refer to [11] and references therein. In the case of the
wave equation, involving either lower order terms or some other type perturbations.
Problem P2 in © has been studied in [1, 2, 3, 12]. On the other hand. Bazarbekov
5] gives another analogue of the classical Darboux problem in the same domain
). Some other statements of Darboux type problems can be found in [4. 6, 18] in
bounded or unbounded domains different from (2.

Protter [27] formulated and studied these three-dimensional analogues of the
Darboux problem on the plane 50 years ago - in 1952. Nowadays, it is known
that in contrast to the Darboux problem in R* the 3 — D Problems P1 and P2
are not well posed. The reason for this is that the adjoint homogeneous Problems
P1* and P2* have smooth solutions and the linear space they generate is infinite
dimensional as one could see in Tong Kwang-Chang [29], Popivanov, Schneider [24],
Khe Kan Cher [20] and Popivanov, Popov [26].

Lemma 1.1. (see [13]) Let p, ¢ and t be the polar coordinates in R*: r, =
pcos, Ty = psing. Let us define the functions

k 2 _ 42\n—3/2—k—i
n ‘.t(p —1 )n \
H{(p,t) = ) Al o (1.2)
1=0 P
and .
v (p? — 12 n—1/2—k—i
e =Y Bz
1=0 P
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where the coefficients are
(k—1+1)i(n—-1/2 -k —1);
7’.’(n - 2),

AF = (=1)
wnd k—i+1 1/2—-k—1
BZA ZI(—I)‘( —1 + )'l-‘(n-l- / - —"l),'

in — 1)

with (a); == ala+ 1)..{a+1i—1). Then forn € N, n > 4. the functions

Vi (ot ) = Hi(pot)cosnyp  and - V" (p.t,0) = HY (p.t) sinny

are classical solutions of the homogeneous Problem P1* for all k = 0,1, ..., [g] -2,
and the functions

II",\'_"l(p.,t,;p) = El(p.t)cosny  and WD z(p t,p) = Ef(p,t)sinng
are classical solutions of the homogeneous Problem P2

for allk =0.1,.... [" 5 1] _1.

A necessaryv condition for the existence of classical solution for Problem P1
(Problem P2} is the orthogonality of the right-hand side function f to all functions
1-"‘f1‘i(p, t.) (respectively II",:_"i). To avoid an infinite number of necessary condi-
tions in the frame of classical solvability, we need to introduce some gencralized
solutions of Problems P1 and P2 with eventually singularity on the characteristic
cone ¥y, or only at its vertex O. Popivanov, Schneider in [24] and [25] give the
following definition:

Definition 1.1. A function v = u(z; 22,t) is called a generalized solution of

the Problem P1 in Q if:
1) u € CHO), uf
2) the identity

/(uiw, — Uy Wy, — Up, Wy, — fw)drydradt =0
0
holds for all w € C*(Q). w = 0 on Sy. and w = 0 in a neighborhood of Ss.

sovo = 0 u15] =0

Garabedian [10] proved the uniqueness of a classical solution of Problem P1.
Popivanov, Schneider [25] proved the uniqueness of a generalized solution in
CHO\O). 1t is known (cf. Popivanov, Schneider [25], Aldashev [1]) that for every
n € N, n > 4, there exists a smooth function

falas,z2.1) := fr(p.t) cosnp € C"72(Q),
whose corresponding generalized solution of Problem P1 near the origin O behaves
like ri=", where r = (z? + x5 + t*)!/? is the distance to the origin. The same
phenomenon appears in the case of a more general boundary condition P, (see [11]).

These singularities of the generalized solutions do not propagate in the direction
of the bicharacteristics on the characteristic cone. It is traditionally assumed that
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the wave equation, whose right-hand side is sufficiently smooth in €, cannot have
a solution with an isolated singular point. For results concerning the propagation
of singularitics for operators of second order we refer to Hormander [15. Chapter
24.5]. For some related results in the case of the plane Darboux problem see [23],

Further, we study the Problem P1 only in the case when the right-hand side
function f is a trigonometric polynomial of order {:

!
2 . .
fler,ea,t) = fo(p.t) + ) (falpt)cosnp + fi(p.t)sinng) . (13)
n=1
In this case Popivanov, Schueider [25] proved the existence and uniqueness of
a generalized solution u(zy, xy,t) of the corresponding problem. We already know
that u(xy,xy,t) may have power type singularity at the origin. More precisely,
there arc solutions that have the growth of '~ at the point O. In this paper
we will prove some existence and uniqueness results for Problems P1 and P2 and
study the behavior of the generalized solution around the origin. Let us denote the
weighted uniform norm
* , .|oi+l/2Da 7 |
= max 7 Nl
1 fall; D oax 20 1)

fa<g: 1=1.2

analogous to the weighted Sobolev norms in corner domains (see [21], [14]). Denote
as usual 29 = a® for ¢ > 0, and 2% = 0 for x < 0. Then the main results are:

Theorem 1.1. Let us suppose that f(zy.zy,t) € CU=H+(Q) has the form (1.3)
and that
/ “,-kn,i(z] , Lo, t)f(:l?l s L2, t)(l.’lhd.’lfgdt =10 (1.4)

Q

for alln = 2,3,..,01;1 = 1,2, k = 0,1, ..., [g] — 1. Then there exists an unique

generalized solution u of Problem P1 . Moreover, u € C*TU=4+(Q\O) and for
every € > 0 it holds the a prior: estimate
(s, 22, 0)] < Crrt/ 4| fol I§ + Coer ™| A1l
[1/2]
2 -
+Car 2 In vt Y |1 Farllfog ),
k=1

5
+C4 Z 1 farrilliar—3y,
k=1
where Cy . depends on =, but all the constants Cy, C5 ., C3 and Cy are independent
on the function f.

Theorem 1.1 gives an a priori estimate of the generalized solution. Now the next
Theorem 1.2 provides an a priori estimate for the generalized solution and clarifies
the significance of the above orthogonality conditions (1.4). In other worlds, for any
couple (n, k) the corresponding condition ”controls” one power-type singularity.
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Theorem 1.2. Let s € N be such that 2 < s <1 . Suppose that f{x;,z5.1) €
CU=1+(Q) has the form (1.3} and satisfies the orthogonality conditions (1.1) for
any couple (n,k) such that n.k € NU{0}. 2 < n < l.n—-2k > s+ 1 and
i = 1,2. Then there exists an unique generalized solution u of Problem P1 such

that: u € C*HU=9+(Q\0) and the estimate

!
@y, w0, )] <O YN | Al ). (1.6)
k=0

holds. If we suppose additionally that there are m.p € NU {0} and j = 1 or 2 such
that 2 < m <Il.m—2p =25 and

/ "})m'j (;1,‘1 LT, t)f(;l'-l Lo, t)d.’l?ld:l’gdt -',é 0, (17)
Q
then in some neighborhood of the origin one has
|u{n[52 (;rl,:vg)[ > c(x] +22) U2 o>, (1.8)
where
27 2
11'1111152 (.131,:232) = / “|:=|;,; cosmy d*foc urr.)nﬁsg (3:1!1"2) = /u]t=|r| sin my d(f;‘
0 0

To illustrate the dependence of the singularity of the generalized solution on
the orthogonality assumptions, let us consider the following table:

Table 1. The orthogonality conditions and the order of singularity

[ [-1 -2 [-3 - 4 3 5
1 ‘ 14.?. o ‘ 2.
2 o "6}' 1
3 ",04 ]
m —2p— 1 me‘i

[ —4 o | A o 1,,-01—3,1

-3 L’I"" ‘,,;—2 i

[ 2 o {'0'”1 i

1-1 1y
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Observe that both V"' and V,** are located in the n-th column and

(n — 2k — 1)-st row of Table 1. Thus, If}_,"‘i form the right most diagonal. the next
one is empty — we put in the cells "diamonds” o, \"l’l‘i constitute the third one.
and so on. The first column designates the order of singularity of the generalized
solution.

Theorem 1.1 asserts that the generalized solution of Problem P1 is bounded
if the right-hand side f is orthogonal to all the functions l*’k’” from the table.
Theorem 1.2 specifies that (if [ > 2) the singularity of the generalized solution is
no worse than '~ if f is orthogonal to I-’k"‘i from the triangle under the (s — 1)-st
row. In other words, the functions from the k-th row of the table are "responsible”
for the generalized solutions with behavior » =" near the origin O,

The present. paper is a generalization, extension and improvement of the results
obtained in [26]. It consists of an introduction and five consecutive sections. Section
2 is devoted to the solutions of the homogeneous adjoint Problems P1* and P2*.
In Section 3 are formulated the 2 — D boundary Problems P12 and FP13. shortly
related to the 3 — D Problem F1. The main technical results are established in
Sections 4 and 5 — we study the behavior of solutions of 2 — D Problems P12 and
P13. In the last Section 6 we give proofs of Theorem 1.1 and Theorem 1.2 based
on the results of the previous two sections.

2. PROPERTIES OF THE SOLUTIONS HY AND Ey

First, we will present three different ways to introduce the solutions of the
homogeneous adjoint Problems P17 and P2*. The functions H;' and E]' could be
found in Khe [20] in the form

tpn——‘Zk—S(l _ t?/p2)71-'2k‘—3/2F(n —k, =k 3/2 t?/p‘Z)
and

/)-n—?k—l<1 . t2/p2)n——2k-1/2F(n — k. —k: 1/2 t‘B/p'.?)?
where F' is the hypergeometric Gaus function.

On the other hand, one could obtain H[!(p,t) and E['(p.t) by differentiation
of EJ'(p,t) with respect to t.

Lemma 2.1. (see [13, Theorem 4.2]) The functions H'(p.t) and E}(p.t).
defined in Lemma 1.1, satisfy

0 n n

a p(pt)=2(n—k— 1)Ek+1(/)= t),
a .

o B (p,t) = 2(k = n+ 1/2)H{ (p.1)

and they represent some derivative of EJ(p,t) over t:

. B (_1)k+1 o 2k+1 (p-z - tQ)n—l/‘_)
Hi(pt) = (2n — 2k — 1)ap41 a) pr .
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n _ (—=1)* o\ {/)Z_t‘l)n—l/?,
Ek (Pf) - (2” . 2}1)31\ (a) ( [)“ ) .

Remark 2.1. This procedure of differentiating the function E} (or I-l'(_;"f) with
respect to t will (as in Lemma 1.1) produce solutions 17" and 1W," of the equation
(1.1). but for & > n/2 the smoothness at the point O will be lost.

Remark 2.2. The solutions of the adjoint Problem P2* (P1*) given in Lem-
ma 1.1 are not orthogonal. For example, one could check this out for W' and
I37"". Tt is sufficient to show that

1/21—t

K :—/ /E (p. ) E (p.t)pdpdt # 0.

In fact, Lemma 2.1 implies 8*E}/0t*(p,t) = cEJ(p,t) for some constant ¢ and
therefore

1/21—t
cK =//E" (p t)p dpdt
0 t
/21—t i
= | Ej (/)1—/)) (pl—p)pdp //( ) p dpdt <0,

1/2
because El(p.t) > 0 and OE[ /Ot(p,t) <0 for t < p.

Remark 2.3. The functions H}'(p,t) and E}'(p,t) are linearly independent.
Indeed, suppose that some linear combmat.lon of these functions is zero. Then from
Lemma 2.1 it follows that El' as a function of ¢ is a solution (for a fixed p) of a
homogeneous linear differential equation with constant coefficients. Therefore Ejf
must be a finite sum of quasi-polynomials of ¢. which obviously is not true.

A basic tool for our treatment of Protter problems are the Legendre functions
P, (see (3.8) below). Some properties of the Legendre functions P, one can find in
[9]. The next lemma plays a key role in the last section.

Lemma 2.2. Let us denote

€
B . N+ s2
hiy(€.n) = /s"P,, (f(]f—-HD) ds.

n

-1
Ifv=n-—1/2, then it hold: (a) for i =0.1...., !U ]

! s (E1) [qm st oot = L0 P HT (p.1)
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and(b)fbri::O.lV”.{z]

2
c? (9 v n 2o
<52 - 57—)) hiy—2:(&:7) I£=(p+t)/2;n=(p~t).!2 =dp' P E} (p.1),
S

where the constants cl', dI' # 0.

Proof. (a) We will calculate the integrals Ay (£, n) using the Meliin transform.

given by
2
:/t‘”’"'f(t) dt
0

and the Mellin convolution "o”, defined by

/f g(t dt

Recall that the relation between both is (see [22. formula (1.2)])
(fog)(s)=f(s)g"(s). (2.1)

To apply the last formula to A}(£,n), let us introduce new variables r.y and z

defined by
3 V/ﬁ vén | s
Ve =4[+ /= 2y= + iz = €.
Y R Y L Rt

Then we have
EI} + 9 \/—
f \/ 1

s{§ + )
(12\/_) _d_(\/ZT s)_sg—:_‘
ds ds \ s +\/E 82z ]

(Vi +Vy -1 =1=20y = 1(/y = L + Vi)
(VI —Vy =10 —1=2y —1(/y =1 - i)

when s = /&, we have y = 1, and y = « for s = £ or 1 . Substituting in hj. we
find
oG

Lk T e \O ’
= (5‘1) () 002 (e Vi
+ 4
0
\/—b)k 1\/—dy

Now we are ready to use (2.1) and formulae (11.13(4)), (2.10(4)) from [22] - ap-
plying the Mellin transform over x (here "= means “transforms into”):

0 1 (=s)T' (5 —5) ;
@~U+R(¢;)H[xgz~)F&+%"”’
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and therefore
[ (L — 5) T (~ 12k — )

[T (1+%—s)
To find the inverse image of the right-hand side, denote as usnal by I, the
Riemann-Liouville fractional integral (derivative) of order a:

18, f(x 'r( /ft) — )71t a > 0

12, f(x) = f(x);
. B d {O]-.‘l Cfa .
Ioff (ISI+) If(il?) = (;]—T) (Ié+{" }f) (r) . a>0.

Under these notations, the right-hand side of (2.2) is the Mellin transform of the
','r |/+] A—ps2 (

function ks
T (u _L—H) Iy, * ) .

Indeed, using (2.2.(4)), (1.10) and (1.4) from [22], for k < v — 1 we find
.. ko2 v v—k—1 —k INT _’_")'i — i1 u -8
.7:—5110_. : (.17 &i"ﬂ(l -1, 7 ) — I (V i (1—17 AN 3/ S).
Hence, taking k = v — 2i — 2. for some constants C,; we have
. . d\’ o i
hl,;_-')l'__,')(l', Z)z«u«}-?z—kl — C,/_j.’lf 1 (_) (.’L‘—V+1_l’12(.’l} _ 1)++l/-) )
o dx
Let us now return to the variables p and ¢ :

v—2i-1,40 (d/dr) r‘(__.--u+i—1/2(,c )i+1/'2)

( ) )—1//'3-}—_} ((£ _ 0)2)r+1/'_’~-—j
n 3
pm2imy , 0 —v/2+) ( §2 )H'l/"—"'i
= —#? T —s5
4 5 ((p?' - t'z)) (p? — %)

J
= Y djt(p? - 2y m U g2t
jHi<a
! t(p'l _ t‘.’)n—B/'l—j—j

= . 0"1 2172
J:

1|




In order to determine the coefficients aj, one could notice that from the definition

of hi the function
—1/2p0 p+t p—ty\ . A

e

satisfies the wave equation. Therefore, after substituting in the equation. we find
P — i AT oo
aj = agA; and

-1/2 p‘4 t p—t v
P l/)h::—?i—il ( 9 *T) = Q; Hz'"(p' t)
v

(b) Let us find the functions (9/9¢ — 8/0n) hy_,;(&.n), wherei = 0,1, ..., [5] :
Notice that for i > 1, due to Lemma 2.1 and (a),

o 0 J . 9
~1/2 I v 9; £. e L n ) = ntreny )
P (8{ 37]) hy, (€M) Ci atHz_l(p t) = CME! (p.t)

Only the case i = 0 has been omitted, i.e. we need to calculate

8 9\,
(a_g - 5;7') hu(E-.T))-

Therefore we consider the function

a . vl kv _kdu+3 vkl
52‘“17 R (a: T (z—1), ° ),
where k£ = v and i
T = p-zp_ 3 2z = (p° — tH)V2,
That is
aT
d v Yy 3} v 1/
-‘é?:"‘Ll.'c%lI&_L (.’r""'%(m -~ 1)_{_1/2) = az"“x T /T“" Hr -1 dr
0
T
0 . . 5
— 52pu-+-12—u—1 /T_V—%(T . 1)—-1/2(17_ — 2—U—1pv-1~lx—l/-%($ - 1)—1/-%%
1
— 2—u—1pu+l (p2 o tZ)U+3/2 (p2 - t2)1/2 ‘thl — 2—V(p2 B tl)l’
pIvE3 + (p? — t2)2 P :
Hence for v = n — 1/2 we conclude that
- o 9 A (p‘2 _ t?.)n—l/'z
P 1/2 (% - 5_77) hzl:(g 7]) =p 1/~Cn pn—-l‘/?. = CnE[r)l(ﬂ t) a

3. SOLVING PROBLEM P1

In terms of Theorems 1.1 and 1.2 it is sufficient to study the Problem P1 only
when the right-hand side f of the wave equation is simply

Flp.t.9) = f(p.t)cosny + f2(p.t)sinng, n e NU{0}.
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Then we seek solutions of the wave equation of the same form:

ulp.t,p) = ul(p,t)cosny + u';).t(p. t) sinny.
Thus Problem P1 reduces to the following one:
Problem P12. To solve the equation

1, n?
(Un)op + =(tUn)p — (Un)tt — —un = fun (3.1)
p p?
in N ={0<t<1/2:t<p<1-t}C R with the boundary conditions
P12 u,(p.0j=0for0<p<land uy(p.1-p)=01for1/2<p<1.
Let us now introduce new coordinates

_ptt _ p—t 9
{ - 2 b 77 - 2 ] (3..)

and set
v(&.m) = p' Pun(p.t) 5 g(&m) = p' 2 fulp.t). (3.3)

: 1 :
Denoting v = n — 57 one transforms Problem P12 into
Problem P13. To find a solution v(&,n) of the equation

viv+1)

~ WL =g (3.4)
in the domain D = {0 < £ < 1/2; 0 < n < &} with the following boundary
conditions:

P13 (¢ =0for £€(0,1/2) and ©(1/2,7) =0 for n € (0,1/2).

Problems P12 and P13 have been introduced in [25]. although the change of
coordinates £ = 1~ p—tand n = 1 — p+t is used there instead of (3.2). Of
course. because the solution of Problem P1 may be singular. the same is true for
the solutions of P12 and P13. For that reason, Popivanov and Schneider [25]
have defined and proved the existence and uniqueness of generalized solutions of
Problems P12 and £13. which correspond to the generalized solution of Problem
P1. Further, by "solution” of Problem P12 or P13 we will mean exactly this unique
generalized solution.

Ven

Remark 3.1. Notice that even when the right-hand side function f,(p.t)
belongs to C* (Q), the corresponding function g(€,7) = p'/2 fu.(p,t) in (3.4) belongs
to CF( ﬁo\O), but its derivative may not be continuous at the origin O. At the
same time, when the solution v(€,7n) of Problem P13 is bounded, the solution
wunlp,t) = p~12v(é,n) of Problem P12 may be singular.

Nevertheless, we will solve Problem P13 instead of Problem P1. We can
construct the solution of the Problem P13 using two different methods. First,
following Popivanov, Schneider [25], one could use the equivalent integral equation

1
§=3 n=¢&

Uléo o) = (

§=&o n=Na

viv+1)

W(?(&n) +.0(E,77)> dnd¢ (3.5)
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and construct the solution as a limit of a sequence of successive approximations
U'*) defined by

1
§= 7 n=E&n

U (69, m0) = / / g(&.m)dnde. (3.6)
E=€n N=10
(k+1) r V(V+1) (k) | -
U (o:m0) = ——5 U (& n) + gl&.m) ) dndg. (3.7)
E= En’l o

On the other hand. notice that the function

(=& —m) +25m + 2577)
18 =PU
R m. &) ( (&1 +m)(€+n)

is a Riemann function for the equation (3.4) (Copson [7]). Therefore. we can
construct the function v as a solution of a Goursat’s problem in D with boundary
conditions ©(1/2,7) = 0 and v(£,0) = (&) with some unknown function ¢{£).

which will be determined later:
1

(3.8)

2 2
")‘('5:77) = 99(5) /"r’(é])ag (61:0:6:”)(151 - / /R(sclf.fhsf:’7)9(&1-771)(17}1 dEl'
¢ 1 g 0
(3.9)
Now, following Aldashev [1], the boundary condition v(£.§) = 0 gives the equation
i L
" o 5 (& [ 3
G / ( )1 =-/-~' Py<——>d 3.10
(&) =@(&) + [ w(&1) 5g, v g ) v (&1) 3 &1 (3.10)
§ £
for the function (&), where
G(§) = / / ( fum + & ) g(&m)dmdéy. (3.11)
§(& +m)

According to formulae (30.11), (35.28) from (28], the integral equation (3.10) is
invertible and we ha\'e

d G&) e _ g d [ (a)GE),
A 1& ( ) @ B=Co & P(e) g G
Finally, due to ¢ 1/2) = (G(1/2) =0, it follows
6 G
‘A = P . .
o(6) = G(O) + ! ( 5) Sag. (3.12)
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4. THE CASE n = 0,1

Using the sequence {U'*'} defined by (3.6), (3.7), we have the following

Lemma 4.1. Let 0 < = <1 and suppose that \v(v + 1)| < (1 + 2). Then the
solution U(&.n) of the integral equation (3.5) in D satisfies the estimate

U S CE—n{E+n)~~ sup 9l

where the constant C' depends only on v and =.

Proof The key point in the proof is the estimate for the integrals:

t—

7=Eo

/ — )€+ 1) 2dndéE
E=Eo 1=MN0
€=.% n=£o
= / / ((E+n)"7t = 2p(€ +n)~*72) dnde
E=E&a n="10

3]
l 1 1 — “, _:_.] 2 .-:...]
- - £ _ : = =114
/( (o +1m)° - 2+n) T (€o+n) +1+ ( + 1) )cn

9.
< [(orn - Ztcorn ) an
& =+ £
o
£o {—¢ 2
=/(5(1 “)(€o+n)" 1+°£(€o+71)""1) dn
no
_ 1 1-¢ 260 ) —&
= _5(1+a)(€0+’70) +5(1+€)(€0+7)0)
1 . e
- TR (§o ~m0)(&o + 1)~ "

For the function U'") we find

v —

sup U0 < —(& - no)Stll)p gl < (&0 — 10) (€0 +10) sup |g].

Now, because of

5:}5 n=8o
e viv+1)| (e
/(l‘“‘*” U (&, 77))| / |( FnE ll( = Uy, m) | dnde.
E=Eo =10 ¢
1
if take a := ly(;/—:)l, we have by induction

’(U(“ - U% (&, 'Io)' < a* (& = 10) (€0 +10)° sup lg]-
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Indeed, using the calculations of I, we find that

;. o i viv +1)) 4
|(L‘”‘+” — L““”)(ﬁo;’]o)’ < / / v +1)] (v + ,+, a* (€ — n)sup |gldndé€
(€+n) D
=0 =70 (4'1)

aF (€ — mo) (o +mo) " sup gt

Finally. we arrive at the estumate

k
UG (g mo)l < D |](U“'“} — U")(€0: o)
i=0

k
< S a6 — m0)(éo + o) sup gl
i —0

1=
1 — ak-}--‘ o
= (———'—)(Eo — 10) (& + M) " sup lgl,
(1 - Of) D
which, together with (4.1), shows that if a < 1, the sequence {U''*} uniformly
converges to a solution U({ .n) of

;-,—
2

1
U (€0, m0) f / ("é”: )) (&) + g€ n)) dnd.

-—-gﬂ =T

Even more, it holds the estimate

1
U )l < (€—n)(«£+n) “suplgl. O
(1 D
Now, for n = 0 or 1 we have v = ~1/2 or 1/2, respectively. and we will apply

[Lemma 4.1 with suitable ¢.

Theorem 4.1. For the solution un,(p.t) of Problem P12 with right-hand side
function f, € C(Qo) the following a priori estimate holds:
(i) for the case n =0

luo(p, )| < Cp/* max|p'’* fol
Qo
with constant C, independent of the function folp,t):

(ii) if n = 1, then for every 5> 0 there exists a constant Cs, independent of
the function f;(p, t), such that

us (p, )] < Cop™° max 102 fl.
Q

Proof. Notice that when n = 0 and n = 1 we have |v(v + 1)| = 1/4 and
lv(v+1)| = 3/4, respectively. Therefore one could apply Lemma 4.1 for the solution
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v(€.n) = U(€.n) of Problem P13 with £ = 1/4 and ¢ = 1/2 4 §, respectively. The
assertion follows from the relation (3.3):

_,r) +t _t B
u(p, b)) = ] : '(p. oot )!<C'1 2 max || < CpM/P* max |p 2 1.0
2 2 D Qq

5. THE CASE n > 2

In this case, unlike the above approach, the behavior of the solution is studied
n [26], using the properties of the Riemann function (3.8), given by Legendre
functions F,. Let us remind some of these results here. For the function v(&,7),
defined by (3.9), (3.12}) and (3.11), it is not hard to see that v(£,0) = ¢(£) may
blow up when £ tends to 0. Nevertheless, one could control the growth of

1 G(ﬁl e
1 P — 5.1
(&) = €/ (€> 3 &1 (5.1)

with the help of the following lemma:

2=

Lemma 5.1. (see [26, Lemma 3.1]) Let v > 1 be a real number with integral
part [v] and fractional part {v} = v — [v] # 0. Suppose that G € C1¥~21+(0,1/2],
IGH(E)] < A8 for k=0,1,...,[v - 2], for some constant A, and

/{""QJ_QG(f)df =0 for i=0,1..., [V ; 1} . (5.2)
0

Then the function I(€), defined by (5.1), is CV1=1(0,1/2]. More precisely, there is
a constant C, independent of G(§), such that:

(1) (&)} < CAE  of [v] is an odd number,

(i) [1(€)] < CAE=1 if U] ds an even number.

Besides, Lemma 3.2 from [26] asserts that each of the orthogonality conditions
(5.2) actually "controls™ one power-type singularity of the function 7(¢):

Lemma 5.2. Let v > 1, {v} # 0, and p be a nonnegative integer, p <
(v = 1)/2]. Suppose that G € C' 2=1+(0,1/2), |G (€)] < AEP-WITI=F for | =
0.1.....(2p — 1) for some constant A, and

/g”—‘-”-ZG(g)dg =0 fori=0,1,...p—1. (5.3)

Then the estimate
1(6)] < CrAg-lv—2p=1)
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holds for some constant Cy, independent of G(§). Moreover, if

/E”“Q”“?G(E)dé # 0, (5.4)

then
[1(€)] > Coe 271

for Cy > 0 and sufficiently small §.
In other words, one has to impose some conditions on the right-hand side g of

Problem P13 to secure certain behavior of the solution v. In fact, the definition
(3. 11) of the function G(£) gives the equality (see [26])

l

36 /&
/ €2 G €)= / / / gmip, (SIS c1§) o€, 1) 6.

It shows that one needs mthogonaht\ of g to the functions hY ,; , defined in
Lemma 2.2. As a result we are able to prove the following

Theorem 5.1. (see [26, Theorem 4.1]) Let n € N, n > 2. Suppose that g €
C'n=U+(D\O), |D*g(&,7)] < A€l for jal < (n — 4).. and the orthogonality
conditions

1

v—1]

2]

are satisﬁe.d wzth v =n—1/2. Then the solution v(§,n) of Problem P13 belongs to
C=N++1(D\O) and satisfies the following estimates:
(i) if n is an even number, then

(& n)| < CAE I}

(ii) if n is an odd number, then
(&)} < CAEV2.
In both cases the constant C does not depend on the function g(&,n).

—_—
[Wh}
(3

p—

// a(Eg(Emdnde =0 fori=0,1,. [

In the same way one gets the following theorem, which corresponds to Lem-
ma 9.2:

Theorem 5.2. (see [26, Theorem 4.2]) Let p be a nonnegative integer and p <
(v —1)/2). Suppose that the function g € C*P=2+(D\O), [D*g(E.n)f < AE™ lal
for laf < (2p — 2)4 and

R o

//hjj_Q,_ (€,m)g(& n)dndé =0 fori=0,1,...p- 1 (5.6)
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Then the estimate

(€, n)] < CAg~W 2D (5.7)
holds for some constant C. independent of the function g(&,n). Moreover, the con-
dition

/ / R ap2(E,m)g (€. m)dndE # 0 (538)

implies that the lower estzmate
[0(€.0)] > cg~ PP (5.9)
holds for some constant ¢ > 0 and sufficiently small €.

All these preparations and Lemma 2.2 lead us to the following estimate for the
solution of Problem P12:

Theorem 5.3. Suppose that n € N, n > 2, fu(p,t) € CV+(Q\0), and
there is a constant 4 such that |pl®!FY2Def (p )] < A for |a] < (n —4),. Let
also there hold the orthogonality conditions

3 1-t

/ / H(p.t)fu(p.tipdpdt =0 fori=0.1,. [g] - 1. (5.10)
0
Then the solution u,(p.t) of Problem P12 satisfies:
(1) fun(p,t)| < CAp*?|Inp| if n is an even number;
(ii) |un(p.t)] < CA  if n is an odd number.
In both cases the constant C' does not depend on the function f,(p,t).

Proof. Let us define the function g(&,n) = p*/* fa(p,t), where £ = (p +1)/2,
n = (p—t)/2. Then the estimates for f, imply that g satisfies |[D®g(€, )| < C Ao
for |a] < (n —4),. The orthogonality conditions, due to Lemma 2.2, yield

LV ]

/ BY —aio(€ (€, ) did€ = C / / H(0,) fa(p, ) pipdt = 0.

\Ml-—-

Now Theorem 3.1 gives the required estimates for the solution v(£,7n) of Problem
P13, given by (3.9), and u = p~/v is the solution of Problem P12, 0

Using the similar arguments, we get the corresponding result for the case when
not all of the orthogonality conditions (5.10) are fulfilled:

Theorem 5.4. Let n,q € NU{0}, n > 2, ¢ < [g] — 1. Suppose that the
function f, € C?1=2+(Qu\0), |D2 f(p,t)| < Ap~1a1=12 for |al < (2¢ — 2), and

St

| [ He.05.0ptpd =0 fori=01,0-1. (5)

0
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Then for the solution u,(p.t) of Problem P12 the upper estimate
lup(p.t)] < CAp~ -2 (5.12)

holds, where the constant C is independent of f.{p.t). If we suppose also that

51—t

| [ 16050, t00dpa1 20 (5.13)
0 t

then the lower estimate
IU-n(P, p)' Z Cp_('l—.lq—l)

holds for ¢ > 0 and sufficiently small p.
Proof. We again define g(€,7) = p'/? fn(p,t) and we prove the theorem ap-

plying Theorem 5.2 for v = p'/?u and g instead of Theorem 5.1 as in the proof of

Theorem 5.3. O
Finally, Theorems 5.3 and 5.4 show that every solution of Problem P12 is a

linear combination of at most [5] fixed singular solutions:

2 2

such that for every generalized solution u,(p,t) of Problem P12 with some right-
hand side function f, € C""Y+(Qq) the equality

[5]-1

wp,t) = Y civh(p,t) +w(p,t)

i=0
holds with some constants ¢; and some bounded function w(p.t) dependent on
Un(p,t).

Proof. Let u,(p,t) be the generalized solution of Problem P12 with some
right-hand side function f,(p,t) € C'"~H+(Qy). In general, u, has a singularity at
the origin O. Let k be an integer, 0 < k < [g] -1, and f,{,k')(p, t} be the projection
of fu on the linear space Ly, of functions, orthogonal to the functions H? for
1=0,1,..,k:

Lemma 5.3. Forn > 2 there exist [g—] functions vi(p.t), i =0,.... {E] -1,

-t

Lin =< flp,t) : // Hi(p,t)f(p,t)pdpdt =0 fori=0,1,...k
0 t

[T

k

k
Then f, — Y afH! = W e Ly » with some constants o} such that
i=0

1
2

1t
n k) . - .
| [ mo0sE 0000t =0, j=0. .k,
t

0
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1.e.

; 51—t -t
S [ [ 1o )pdpdt = / / H? (9. 1) fa . pipt
=0 o '
for j = 0,1,...,k. This system has an unique qolutlon for constants af . To show

'1 ¢
this. suppose that the rank of the (k x k)-matrix with elements f j H'H pdpdt

is less than k. Then there are numbers 3g. 51.....,% such that at l(*ast one is not

zero and

1
I8 -1

.3//H” (p, Y H (p.t)pdpdt =0 for j =0,1,...k
'0 0

1—

r/

Therefore Z 3;H! = 0 in Qqg, which is impossible, because the functions H;" are
i=0

linearly independent in view of Remark 2.3.
Let us denote by ¢ (p.t) the solution of the Problem P12 with a right-hand

side function H'(p.t), and by wy (p, t) the solution with a right-hand side function

¥1p.t). Then we have for u, the I‘E‘Pl'esentatio“

Z a; L,, + um.

When & < [%] — 1, Theorem 5.4 gives the estimate

or
t

L-
Hl(p.1) (Z ,3,<H,-"(p,£)> pdpdt =0 for j =0,1,... k.

[ \NIH

]U(H (p, t)l < Cp—(nv‘zk—S),

n

while for k = kg := [3] — 1 Theorem 5.3 shows that the function w := u( 2

is at
least bounded. 0
6. PROOF OF THE MAIN RESULTS

We arc now ready to prove Theorem 1.1 and Theorem 1.2 (see Introduction).
Proof of Theorem 1.1. When the right-hand side function has the form

l
f=falp.t)+ Z (FX(p,t)cosnp + f2(p,t)sinng)

n=1
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one could construct the unique generalized solution u(z,.x0.1) as
!
u=uy(p.t) + Z (uy(p.t) cosng + ul(p.t)sinng) . (6.1)
n=1
where the functions u!, are solutions of Problem P12 with right-hand side function
Le CU=+(€y). First of all, we use Theorem 4.1 to estimate the functions u}.
uj and u?:
lug(p.t)| < Cp** max|p? f5| < Cr'/*|| follg

o
1 v - /2 i -3 *
luy(p,t)] < Csp ‘Snglzaﬂﬂl’)ffl < Cyr™?l[Allg-
For the case n > 2 we apply Theorem 5.3 with the constant . Hf,,H(n_m

Because of the identity

1—-

//H[‘ p,t) fL(p, ) pdpdt = /T " ‘(rl To,t)f(ry, xa, t)dedesdt = 0. (6.2)

t
the orthogonality conditions (0.10) are fulfilled. Therefore, if n is an even number,

iu:.ll < Cn“'l/’l/?l Inp| < Cf’l"'llzllnr”lanFn_4)+s

while

IU | < Cn A= CannHm )4

if n is an odd number. Finally, summing up all these mequalitios, we find

ul < Jug| + Z lunl + Tunl) < Crrt il folls + Casr N1 A1ll5

n=]
[1/2] (5]
+Cyr! /2 |In | lefuli se-e + 0 D Mokl D
L k=1

Remark 6.1. Notice that the orthogonality condition / I‘-'k""' fdridrodt =0

)
for a function f with the representation (1.3) is imposed only on the function
% (p,t) and has no influence over the other functions fi (p,¢) from (1.3) with indices

(m,3) # (n,3).

Proof of Theorem 1.2. We use again the representation (6.1). For n = 0
and 1 we have respectively

lugl < Cp'*Ifollg < C'r 1| foll

and
) —-1/2 * — *
[ujf < Cl/zf) 1"’||f1i|o <C'r 8+1”f1”0~
. , - . n-—s+1
because s > 2. For n > 2 we apply Theorem 5.4 with ¢ = — and
-
A = |[fall34-2. Now, the identity (6.2) shows that the orthogonality conditions
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n—-s+1]

1>
5 =

hold for n — 2k > s+ 1. 1.e. for all & > 0 such that ¢ — 1 > [

[‘2/\‘ + 2

.’)

-

} — 1 = k. Thercfore
[ui i < (4 —n+2q+1 < (w —3+le “: < C" —s+1 ‘f *
nl & Ap ~ e p dnlli2g-2), =V~ 1 I n”(n--s--l).;.‘

n—s=+1
__]+1:_.9+1(>r

because depending of parity of n we have —n + 2 { 5

n—s+1 ) )
—s -+ 2. and 2 — |~ 2=n-gs—1orn—s-— 2 These give the required
upper estimate for the solution u. For the second part of the theorem. let us notice

. . m—s+1
that when m — 2p = s, the corresponding number ¢ is ¢ = [—m—a———] = p. Thus,
the lower estimate in Theorem 5.4 gives

—m+2q+1 ~s+1

lufnll;o' > cp =Ccp

which completes the proof. [
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