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1. INTRODUCTION

The depths of the Boolean functions are sometimes used for measuring their
complexity (especially in the case when parallel computations are considered). Ac-
tually. there are at least two variants of the notion of depth. The difference comes
from the presence or absence of the possibility to use 0's and 1's “for free” in the
computations. The first of these options is chosen for example in [1]. The notion
of depth is defined there in Section 1.3 through a corresponding notion of Boolean
circuit, and Section 1.4 shows that an approach through Boolean formulas would
vield the same values of the depths. The other variant of the notion, also current
in the literature, can be defined in a quite similar way, but without the possibility
to use the constants 0 and 1 as predecessors of the gates of the considered circuits.

The gates of each Boolean circuit have as their types Boolean functions be-
longing to some given set, which usually is chosen to be complete.! Therefore the

'In fact, the notion of completeness also splits into two ones - the weaker notion corresponds
P P p
to possible using of 0's and 1’s “for free”, whereas the stronger one corresponds to the case when
P g : g
there is no such possibility.
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depth of a function f depends not only on f. but also on the choice of this set
of functions. When we compare the depths of two Boolean functions. the result
may also depend on the choice in question. For example, the implication has a
smaller depth than the equivalence with respect to the set consisting of negation
and conjunction, but the situation is the opposite with respect to the set, whose
elements are the constant 1. addition modulo 2 and conjunction (of course, if the
constants can be used “for free”, the constant 1 mav be omitted from the second
of these sets). To get a complexity measure depending only on the function f, we
shall look for the depth of f in the worst case, i.e. in the case when the depth is
maximally large.

2. SOME DEFINITIONS

To avoid reasoning about Boolean circuits or Boolean formulas, we shall define
the notion of depth (and also of completeness) in another equivalent way. Suppose
0 is a set of Boolean functions?. We define infinite sequences Q! Qi1 Q2
and 0 Q0 QPRI of sets of Boolean functions as follows:

e O g the set of all Boolean functions of the form
gley, ..o en) =2, n=1,23,.... k=1,2..... n

(the projection functions), whereas Q% consists of these functions and also
all constant Boolean functions;

o Q"1 ig obtained by adding to Q") all functions of the form

9(-’151,----.3?11) = f(gl(lrls-~-:;1:t¢)----59711(-7:1-----.17”))

r+1]j

with f belonging to Q and g1, ..., gm belonging to Q" and Q! is obtained

similarly, but with a replacement of Q) by QU

We shall call the set € strongly complete if each Boolean function belongs to
Q) for some non-negative integer r. The set  will be called weakly complete
if each Boolean function belongs to QI"! for some non-negative integer r. Since
Q) C Q) for all Q and r, any strongly complete set is also weakly complete.

Let h be a Boolean function. If Q is a strongly complete set of Boolean func-
tions, then the smallest r such that A € Q) will be called the strong depth of h
with respect to (), and it will be denoted by *Dq{h). Similarly. if Q0 is a weakly
complete set of Boolean functions, then the smallest 7 such that & € QU will be
called the weak depth of h with respect to ), and it will be denoted by “Dq(h}. We
not;a thatt ]SDQ(h) > “Dg(h) for any strongly complete set  (due to the inclusion
Olr c Qlrh.

2We shall consider Boolean functions only of a non-zero number of arguments. In particular,
the constants will be regarded as such ones too.
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There is an easy reduction of the notions of weak completeness and weak depth
to the notions of strong completeness and strong depth, respectively.

Lemma 2.1. Let Q be a set of Boolean functions, and let Q' consist of the
one-arqument constants 0 and 1 and of all Boolean functions (including the ones
from Q) that have the form

Ar AT AT f(Co1, e CORG T CILs v oy Cly s T2y - o L0y Cil s - -+ Criky )

with f in Q and ¢;; in {0.1}. Then QU = Q") forr =1,2,3,...
Proof. By induction on r [J.

Corollary 2.1. Let Q be a set of Boolean functions, and let Q' be defined as
in Lemma 2.1. Then Q is weakly complete iff Q' is strongly complete, and in such

a case the equality
“Da(h) = *Dq:(h) (2.1)

holds for any non-constant Boolean function h.

Of course, the equality (2.1} does not hold for constant functions, since they
have weak depth 0 with respect to any weakly complete set {2, whereas their strong
depths with respect to the corresponding set ' will be equal to 1.

By a well-known theorem of Emil Post, the strongly complete sets of Boolean
functions can be characterized as follows: a set  of Boolean functions is strongly
complete iff there are in Q at least one function not preserving 0, at least one
function not preserving 1, at least one function that is not self-dual, at least one
function that is not monotonically increasing and at least one non-linear function.
Hence. by Corollary 2.1, a set Q of Boolean functions is weakly complete iff there
are in (0 at least one function that is not monotonically increasing and at least one
non-linear function.

Remark 2.1. Whenever a finite strongly complete set Q of Boolean functions
and a positive integer n are given, one can consecutively find lists of all n-argument
functions in the sets Q! for r = 0.1, 2,... This can be done thanks to the fact that
only n-argument functions from Q" are used for the generation of the n-argument
functions in QU1 To find *Dq(h) for a given n-argument Boolean function h, it
is sufficient to carry out this process until one reaches for the first time a set Q"
containing h as an element. The weak depth of an n-argument Boolean function
with respect to a finite weakly complete set of Boolean functions can be found in a
similar way.

Although the number *Dq(h) depends both on the function h and on the set
(). this number remains bounded for any fixed h. In fact. the inequality

Dqa(h) < 2" (2.2)
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holds for any strongly complete set 0 of Boolean functions and any n-argunent
Boolean function h. To see this, suppose (2 is a strongly complete set of Boolean
functions and 7 is a positive integer. Since there are only 2°" n-argument Boolean
functions, Q% contains at least one of them, and Q' is a subset of Q" ") for any
natural number 7, it is clear that QU1 \ Q") contains no n-argument Boolean
function for some r less than 2°". Obviously. all n-argument Boolean functions will
belong to Q) for such an 7.3

The fact we just indicated allows us to give the following definition: for any
Boolean function h, the largest of the numbers *Dq(h). where 2 ranges over all
strongly complete sets of Boolean functions, will be called the mazimal strong depth
of h and will be denoted by *D(h).

A quite similar reasoning shows that also “Dg(h) remains bounded for any
fixed Boolean function i when @ ranges over all weakly complete sets of Boolean
functions. For any Boolean function /. the largest of the corresponding numbers
“Da(h) will be called the mazimal weak depth of h and will be denoted by “D{h).

Example 2.1. The maximal strong depth of the negation function is equal
to 2. In fact, let h = Az.Z. If 2 is an arbitrary set of Boolean functions. then Ar.z
is the only one-argument function in Q. Suppose Q consists of the constant 1,
addition modulo 2 and conjunction. Then  is strongly complete, and the only
one-argument functions in Q'Y Q9 are the two constants. hence *Do(h) > 2. It
remains to prove that i has a strong depth not greater than 2 with respect to any
strongly complete set of Boolean functions. To prove this. suppose that Q is an
arbitrary strongly complete sct of Boolean functions. By the Post Theorem. there
are functions fo and fi in Q such that fo(0....,0) =1 and fi(1,....1) = 0. The
one-argument functions

ho = Az.folz.....2), hy = Ae.filz,....2)

belong to Q1. Either some of them coincides with h or these functions are the two
constants. In the first case h belongs to '), hence *Dq(h) = 1. In the second one
we may consider some function f in Q that is not monotonically increasing (such
a function exists again by the Post Theorem). Then A can be obtained from f by
substitution of constants for all its arguments except for one of them. Therefore h
belongs to Q%' hence *Dq(h) < 2.

Example 2.2. The maximal weak depth of the negation function is 1. Indeed,
let h be again this function, and 2 be an arbitrary weakly complete set of Boolean
functions. Of course, h does not belong to Q% Since there is a function in Q that
is not monotonically increasing, and h can be obtained from it by substitution of

3The set QL9 contains in fact n different n-argument Boolean functions, therefore the above
reasoning actually proves the inequality "Dg(h) < 22" — n, which is stronger than (2.2) for
n > L. This small strengthening, however, is quite immaterial, since, as Todor Tsankov noticed.
the upper bound 22" can be replaced by another one which has a much lower order of magnitude.
(His reasoning makes use of the disjunctive normal form representation of the Boolean functions.)
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1T . .
constants for all arguments but one, h belongs to Q' Thus the negation function
has a weak depth 1 with respect to any weakly complete set of Boolean functions.

Remark 2.2. [t can be shown that *D(h) > “D{h) for anyv Boolean function A.
In fact. if we choose a weakly complete set (2 such that “Dq(h) = “D(h) and define
the set 2" as in Lemma 2.1. then Q' will be strongly complete and we shall have
the inequalities SD(h) > Do/ (h) > “D(h).

The definitions of maximal strong depth and maximal weak depth of a func-
tion do not provide us with algorithms for computing these depths, because there
arc infinitely many strongly complete and infinitely many weakly complete sets of
Boolean functions. The existence of such algorithms will be shown in the rest of
the paper.

3. ALGORITHMIC COMPUTABILITY
OF THE NMAXIMAL WEAK DEPTH

We start with the case of the weak depths, because its treatment is much casier.
and we have a result in a more finished state for this case.
We shall use the following six weakly complete sets of Boolean functions:

0, = {7, Aay.xy },
Oy = {Ae.Z, Azy.xVy}.
Q3 = {dayx—y},

Q = {lyay}

Q= {dayavyl,

Qs = {Aey.7=7}.

Lemma 3.1. For any weakly complete set Q0 of Boolean functions some of the
sets 0. 0. 05,04, 05, Qg is a subset of the set QL

Proof. Let Q be a weakly complete set of Boolean functions. Some nou-lincar
function f surely belongs to Q. and a two-argument non-linear function g can be
obtained from f by substitution of constants for all its arguments except for two
of them. The function ¢ will belong to the set QY and will have the form

glr.y) =2y & ax = by & c,
where a, b, ¢ belong to {0, 1}, and “&" denotes addition modulo 2. Without a loss
of generality we may assume that a > b. If a = ¢ =0, then g{z,y) = 2y, and from
here, taking into account also Example 2.2, we see that Q, C QU Ifa =0, ¢ =1,
then g(x.y) = T, hence Oy C OV, Ifa =1, b =¢ =0, then g(x,y) = T=7 and
therefore Qg C QU Ifa =1, b=0. ¢ =1, then g(z,y) = z—y. hence Oy C QI
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Ifa=b=1, ¢c=0,then g(z.y) = Vy, hence Qy, C QU Finally.ifa =b=¢=1.
then g(x,y) = r Vy. therefore 5 C ol o.

Lemma 3.2. Let Q be a set of Boolean functions, and let Q' be any subset of
the set Q. Then VU1 C OV forr=0,1,2,...

Proof. Induction on r .

Corollary 3.1. Let Q and Q' be weakly complete sets of Boolean functions.
and let Q' C Q. Then “Dai(h) > “Da(h) for any Boolean function h.

Theorem 3.1. For any Boolean function h we have the equality
“D(h) = max{*“Dq,(h),“Dq,(h), “Da,(h), “Daq,(h), “Da,(h),“Dq,(h)}. (3.1)

Proof. Let h be an arbitrary Boolean function, and let d be the right-hand
side of (3.1). If Q is any weakly complete set of Boolean functions, then, by
Lemma 3.1 and Corollary 3.1, the inequality “Dg, (h) > “Dq(h) holds for some
i€ {1,2,3,4,5,6}, hence d > “Dg(h). On the other hand, by the choice of d.
there is a weakly complete set © (some of the sets 0y, Qs, 3, Q4. Q5, Q) such that
d="Dq(h) O.

Since, by Remark 2.1, the right-hand side of the equality (3.1) is algorithmically
computable, the above theorem shows the algorithmic computability of the maximal
weak depth.

4. ALGORITHMIC COMPUTABILITY

OF THE MAXIMAL STRONG DEPTH

The algorithmic computability of the maximal strong depth will be shown by
means of an equality similar to (3.1), namely a finite class @ of finite strongly
complete sets of Boolean functions will be indicated such that

*D(h) = max{°Dq(h)|Q € O} (4.1)

for any Boolean function h. We shall call any such class Q@ representative for *D.
Before we actually indicate a class that is representative for *D, we shall give
the easily provable analogs of Lemma 3.2 and Corollary 3.1 that will be used now.

Lemma 4.1. Let Q be a set of Boolean functions, and let Q' be any subset of
the set Q. Then Q7 C QY forr =0,1,2,...

Proof. Induction on r [J.

Corollary 4.1. Let Q and ' be strongly complete sets of Boolean functions.
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and let ' C QY Then *Dq: (h) > *Dqa(h) for any Boolean function h.

To show that a finite class of finite strongly complete sets is representative
for “D, it would be sufficient to ascertain that this class has a property analogous
to the property stated in Lemma 3.1.

Lemma 4.2. Let © be a finite class of finite strongly complete sets of Boolean
functions, and let for any strongly complete set {2 of Boolean functions there be
some subset of Q'Y belonging to Q. Then © is representative for *D.

Proof. We reason as in the proof of Theorem 3.1. Let A be an arbitrary Boolean
function, and let d be the right-hand side of (4.1). If Q is any strongly complete set
of Boolean functions, then, by the assumption of the lemma and by Corollary 4.1,
the inequality *Dq:(h) > *Dq(h) holds for some Q' € O, hence d > *Dq(h). On the
other hand, by the choice of d. there is a strongly complete set 2 (some of the sets
belonging to O} such that d = *Dq(h) O.

Having in mind the above lemma, we shall aim at indicating a class @ that
satisfies the assumption of the lemma.

For any m-argument Boolean function f. any positive integer n and any se-
quence ky, ko, ...k, of numbers from the set {1.2,...,n}, the n-argument Boolean

function g defined by
glay.xa,.. o xy) = flag, Ty oy 2g,, )

will be called a projection instance of f (an n-ary projection instance of f). Clearly,
the relation of being a projection instance is reflexive and transitive. Obviously,
each Boolean function has exactly one unary projection instance. We note also
that, for any set Q0 of Boolean functions, the set Q') consists of all projection
functions and all projection instances of functions of Q.

Asusually, Tp. T7. S, M and L will denote, respectively, the class of all Boolean
functions preserving 0. the class of all Boolean functions preserving 1, the class of
all self-dual Boolean functions. the class of all monotonically increasing ones and
the class of all linear ones. We define finite sets Tp', 737, ST, At and Lt of Boolean
functions as follows:

o T;'is the set of the one-argument Boolean functions not belonging to 7 (for
1=0,1);

e ST is the set of the symmetric two-argument Boolean functions;

e AT is the set of the three-argument Boolean functions g satisfying the co
ditions ¢(0.0.1) = 1 and ¢(1.0,1) = 0:



e L' consists of all two-arguments functions not belonging to L and all three-
argument functions g of the form

glr.y.z)=zySyzsrz o ar by ez = d
with coefficients a.b.c.d in {0.1}.

Obviously, C and C! have an empty intersection for ¢ = T5,77.S. M, L.
The existence of a class satisfying the assumption of Lemma 4.2 will follow
from the next four lemmas.

Lemma 4.3. Let C be the class Ty or the class Ty, and f be a Boolean function
not belonging to C. Then the unary projection instance of f belongs to C1.

Proof. Obvious [J.

Lemma 4.4. Fach Boolean function not belonging to the class S has a pro-
jection instance belonging to ST.

Proof. Let f be an m-argument function not belonging to S. Then there are
ay,ao,....a,, in {0,1} such that

f(al-a'_’-' Q) = f(a-l-h—.; colpy ).
We define the function ¢ by the equality

91, 22) = fThy Thge o Tk, ),

where
ki=a;+1,i=1.2,...,m.

Then ¢ is a projection instance of f and the equalities
.(](Os 1) — f(al-.a'?.: e sam)s 9(110) - f(aﬂa__) ce m)

hold, hence g(0,1) = ¢(1.0} 0.

Lemma 4.5. Fach Boolean function not belonging to the class M has a pro-
jection instance belonging to AT

Proof. Let f be an m-argument function not belonging to Al. Then there are
some j in {1,2,...,m} and some ay,...,a;-1,Qj41,...,ay in {0.1} such that
flay, ... aj-1.0,¢jp1....,an) =1, flay.....aj-1.1,a541,...,0,) =0.
We define the function g by the equality

9(-[1-.1'2:-7;3) = f(ilfkl,llfk:,, e 1'1:1\',,,)?
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where

Lo if i = j,
ol ai+2, fied{l,....j—1,7+1,....m}.

Then g is a projection instance of f and the equalities

hold 7.

Lemma 4.6. Fach Boolean function not belonging to the class L has a pro-
jection instance belonging to LT,

Proof. To prove the statement of the lemma, it is sufficient to show. for any
integer m greater than 2, that each non-linear m-argument Boolean function not
belonging to L has a non-linear (m — 1)-argument projection instance.

Let f be a non-linear m-argument Boolecan function not belonging to LT, In
the case when m = 3, we may reason as follows. The representation of the function
f as a Zhegalkin polynomial has the form

flx,y,2z) = aryz & biyz B boz S haxy S 1 & coy S 32 S d,

where a,by. bo, b3, 01, ca.¢3,d are fixed elements of the set {0, 1}, at least one of the
numbers a, by. bo, b3 is not zero, and if by = by = by = 1, then also a = 1. For all
z.y. > in {0,1} we have

flr.y.y) = (a= by D b3)ay & e @ (b S e & ez)y B d,
flr,y.x) = (a= by S by)xy 2 (b & ey R ez)r & ey S d,
flz.x,z) =(aS b Shlrze(bs B ep Se)rSezzBd

If we suppose that all two-argument projection instances of f are linear, then we
shall have the equalities

a%b«g%bg=a.eb1€fb3=a%bl€%bg=0,

but they imply the equalities a = 0, b; = b, = bs. and this leads to a contradiction,
since some of the numbers a. by, bs. by is not zero. Now suppose that m > 3. We
again represent f(ry,xs,....1,) as a non-linear Zhegalkin polynomial. We shall
show that its non-linearity will be preserved if we do an appropriate replacement
of one of the variables x,.x»,...,x,, by another of them. Clearly, the new non-
linear polynomial obtained in this way can be used for the definition of a non-linear
(m — 1)-argument projection instance of f.

Case 1. The Zhegalkin polynomial representing f(xi,x>,...,x,,) contains such
a non-linear term T that some two distinct variables x; and x; are missing in T .
Then the replacement of x; by z; will leave the term 7T unchanged, and all other
terms of the polynomial will go into terms distinct from 7' — they will remain

o)
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unchanged or will go into terms containing ; (depending on the absence or the
presence of x; in them). Therefore the polynomial in guestion will go again into a
non-linear Zhegalkin polvnomial.

Case 2. For any non-linear term in the Zhegalkin polynomial representing
f(ry.xa,....2,), at most one of the variables x,.x3.....2Ty 1s missing in this
term. The case splits into two subcases.

Subcase 2.1. There is a term T in the polynomial such that exactly one of the
variables x1,xa, ..., T,y is missing in T. Let z; and x; be two distinct variables
occurring in 7. Then the replacement of x; by r; transforms 7" into a non-linear
term 7" with two missing variables, namely z; and the variable missing in 7. It is
easily seen that all other terms of the polynomial (if any) will be transformed into
terms distinct from 7. In fact, T’ could arise only from some term with exactly
one missing variable. and that term should not contain the variable missing in 7.
Hence the polynomial goes again into a non-linear one.

Subcase 2.2. The term xy5 ... &y 15 present in the polynomial. and no other
non-linear term is present in it. In this subcase any replacement of some of the
variables x1,7y. ..., 2, by another of them will transform the polynomial again
into a non-linear one [J.

Let us define now a class @ as follows: © has as its elements all sets {A\z.7. g. h},
where g € ST, h e LT, and all sets {)\z.0, Ax.1, g, h}, where g € M7, h € LT. Clearly.
© 1s a finite class of finite sets of Boolean functions, and. by the Post theorem. all
these sets are strongly complete.

Lemma 4.7. For any strongly complete set Q) of Boolean functions there is
some subset of Q) belonging to O.

Proof. Let Q be an arbitrary strongly complete set of Boolean functions. By the
Post theorem and the preceding four lemmas, there are functions go. g1.92,93. 94
such that each of them is a projection instance of some function from {2, hence
belongs to Q). and the conditions g € Ty'. g, € T17. g2 € ST.gs € Mt g, € LT
are satisfied. If some of the functions gy and g; is the negation function, then
{A\2.T, 92,94} is a subset of QY belonging to @. Otherwise. {A\z.0,Ar.1,g3. g} is
such a subset. (7.

Theorem 4.1. The class O is representative for °D.

Proof. By the above lemma and Lemma 4.2 (.

Of course, the algorithmic computability of the strong depth is shown by the
above theorem in a fully unpractical way, since the class O we defined is very large.

The result can be considerably improved, but this will be probably done in a further
publication.
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