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BOUNDS ON THE VERTEX FOLKMAN NUMBER F(4,4;5)
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For a graph G the symbol G — {4, 4) means that in every 2-coloring of the vertices of
;' there exists a monochromatic K4. For the vertex Folkman number

F(4.4;3) = min{]V(G)| : G = (4,4) and K5 ¢ G}
we show that 16 < F(4,4;5) < 35.
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1. NOTATION

We consider only finite, non-oriented graphs, without loops and multiple edges.
We call a p-clique of the graph G a set of p vertices, each two of which are adjacent.
The largest positive integer p such that the graph G contains a p-clique is denoted
by cl(G).

In this paper we shall use also the following notation:

V(@) — the vertex set of the graph G

E(G) — the edge set of the graph G

G — the complement of G:

G[X]. X CV{(G) — the subgraph of G induced by X;

G - X, X C V(G) — the subgraph of GG induced by V(G) \ X;

Neg(v), v € V(G) — the set of all vertices of G' adjacent to v in G;

K, - a complete graph on n vertices;

C, -- a simple cycle on n vertices;



a(G) — a vertex independence number of G ie. ofG) = cl{G).

Let Gy and Gy be two graphs without common vertices. We denote by Gy + G
the graph G for which V(G) = V(G1) U V(Gy) and E(G) = E(G} U E{Gs) U E".
where E' = {[w.y] 2 € V{(Gy), y € V(Ga)}.

A-
Let Gy, .... Gy be graphs, V(G;) NV(G;) = 0. i # j. We denote by |J G
A

i %
the graph G for which V(G) = |J V(Gy), E(G) = | E(G;).
i=1 i=1
The Ramsey number R(p, ¢) is the smallest natural number n such that for an

arbitrary n-vertex graph G either cl(G) 2 p or a(G) 2 g.

2. VERTEX FOLKAAN NUNMBERS

Definition 2.1. Let G be a graph and p, ¢ be natural numbers. A 2-coloring
VIG)=Tuls Wnis =0

of the vertices of G is said to be {p. ¢)-free if 1] contains no p-cliques and 15 contains
no g-cliques of . The symbol G — (p,q) means that every 2-coloring of 1/{G) is
not (p, q)-free.

Define

Flp.q;s) = min{{V(G)| : G = (p.q) and cl(G) < s}.

Clearly, G = (p,q) = cl(G) 2 max{p,q}. Folkman [1] has proved that there
exists a graph G such that G — (p.q) and cl(G) = max{p. q}. Thercfore

F(p.q:s) exist <= s> max{p.q} (1)

and they are called vertex Folkman numbers.
Obviously, Kpig-1 — (p,q) and Kpyq-2 = (p,q). Hence

Flpg;s)=p+q—-1.ifs>p+qg— 1L (2)

By (1), the numbers F{p,q:p+ g — 1) exist only if p + ¢ — 1 2 max{p.q} + 1.
For these numbers the following result is known ([3]):

Flp.gip+q-=1)=p+q— 1+ max{p.q}. (3)
For the numbers F(p,p;p+ 1) in [4] it has been shown that
3p—-2S Flp.pip+1) £ 2p(e - 1)) - 1. (4)
In {7] it has been proved that
F(p.pip+1) S |ple] =2, p23. (5)

For multicoloring vertex Folkman numbers sec [9].



3. MAIN RESULT

By (1). the numbers F(3.3:s) exist only if s 2 4. For these numbers it is
known that
5. il s 26, according to (2}:

F(3.3:5) =<8 if s = 5. according to (3); (6)
14, if s =4.
The inequality F(3,3:4) £ 14 is proved in [6] and the opposite inequality

F(3.3:4) 2 14 is verified by means of computer in [10].
By (1). the numbers F(4.4:s) exist only if s 2 5. It is known that

7. if s 2 &, according to (2);
Fd.4:5) = ¢ 11, if s =7, according to (3); (7)
14. if s = 6.
The inequality F(4.4;6) < 14 is proved in [8] and the inequality F(4,4;6) > 14
is proved in [3]. By {4). we have 10 £ F(4,4;5) £ 81. From (5) it follows that
F(4.4:5) £ 63.
Our main result is the following

Theorem. 16 < F(4.4:5) < 35.

4. PROOF OF THE INEQUALITY F({4.4:5) < 61

Let V(C7) = {v1.....v7} and E(C7) = {[visvip1], 7 = 1,...,6} U {[u1, 071},
Consider the set V) = {2, v3,v6,v7} € V(C5). Define V, =" 1(V), i = 1,...,7.
where o{v;) = viy1, i = 1....,6, and o(v7) = v;. We denote by T' the extension of
(. constructed by adding the new vertices u,....,u7, each two of which are not
adjacent and such that Nr(u;) =15, i =1,....7. The graph I'; (Fig. 1) is a copy
of T such that the map vy — vi_, up — ub, k=1....,7, is an isomorphism between
[and [';.

Proposition 4.1. ([6]) I'; — (3,3) and ci(I";) = 3.

Proposition 4.2. Let G be a graph such that G — (p,p). Let Vi UV, be a
(p+ 1, p+1)-free 2-coloring of the vertices of K1+ G, where V(Ks) = {u,v}. Then
u.v €Vy oru.v €15,

Proof. Assume the opposite, i.e. u € 17 and v € V5. Then (V7 \w)U (15 \ v) is
a {p.p)-frec coloring of 17((). which is a contradiction. O

Let G be a graph. The graph K; + G. where 1 (I{}) = v, 1s given on Fig. 2.

=1

=1






Consider the graph P with 60 vertices shown in Fig. 3. where I';, I's. '3, Ty
are given in Fig. 1. We denote by Q the extension of P, constructed by adding the

new vertex b such that Ng(b) = U Vo

Proposition 4.3. Q — (4.4) and cl(Q) = 4.

Proof. Since cl(T';) = 3, i = 1,2,3,4 (Proposition 4.1}, we have cl{Q) = 4.
Assume that Q - (4,4) and let 1, U5 be a (4,4)-free 2-coloring of V(Q). Without
a loss of generality, we can assume that b € Vj. Let W; = V(I';) U {a;.b}. Since
QW) = Ko+T;and I'; — (3,3), by Proposition 4.2 we have a; € V4,7 =1,2,3,4.
Thus 1] contains the 4-clique {a;, a2, a3, a4}, which is a contradiction. [

Since |V(Q)] = 61, Proposition 4.3 implies that F(4,4;5) < 61.

5. IDENTIFICATION OF NON-ADJACENT VERTICES

Definition 5.1. Let z. y be two non-adjacent vertices in graph . Then
/L « y denote the graph G, obtamed from G by identifying z and y into new
vertex r * y, that is, V{(G") = V(G ~z—y)U{exy}, G'—asy =G -z —y
and Nt (z *y) = Ng(z) U Ne(y). Let M' = {xy *y1,....Tp_1 * Yp- 1} and M =
M'U{zy *yr}, where z;,y; € V(G) and [z;,y:] ¢ F(G). Then G/M = /“ * Yo
where G' = G/‘”,_

Proposition 5.1. Let G — (p,q). Then G/M = (p,q).

Proof. 1t is sufficient to prove that G = G/x] xy (p,q). Assume that
G1 - (p.q) and let V(G,) = V1 U V5 be a (p, q)-free 2-coloring. Without a lost of
generality we can assume that 1 *y; € V. Let V] = (Vi \ {1+ }) U {z1. 1 }.
Then V] U 15 is a (p, g)-free 2-coloring of V(G), contradicting G = (p,q). O

Let G, and G be isomorphic graphs without common vertices and let the map
V(G,) 5 V(Gs) be an isomorphism. Then for zy, ..., z; € V(G1) we define:

Ni={zixplxy). ....zixp(xi)}, i=1,...,k
Gi=G UGy, i=1,..., k

1 =V(G)\ {zr... o), Vo =V(G)\ {e(a1),... o) };
G'=GViUNL, G = Gi[VaUN.

Proposition 5.2. e = [z; * p(x;). z; > p(x;)] € E(Gy) += [z;.z;] € E(GY).

Proof. 1f © = j, Proposition 5.2 is obvious. Let i # j and j > z'. Clea.rly,
(z;,2;] € E(Gy) implies e € E(Gy). Let [z;,x;] € E(G1). Then [¢(z:), ¢(z;)] €
E(G2). Hence, [z, 2 * o(z; )] € E(G;) and { (z),zi * p(x;)] & EG) Thus,
e ¢ E(G;). From e & E(G;) it follows e ¢ E(Gy). O
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Proposition 5.3. (a) The graphs G' and G" are 1somorphic to the graph G
(b) cl{G}) = cl(Gy).

Proof. Define the map 7 : V{(G,) = V(G') as follows:
a(v)=v, ifvel), and a(x;) =z, x¢(x;), i=1.... k.
Obviously, 7 is a bijection. By definition of G', we have

(u,v] € E(G"), uy,v e 1] <= [u.v] € E(Gy). (8)
w2, % o(a;)] € B(G"), uel] <= [u,x,] € E(G)). (9)

By Proposition 5.2,
(@i = play), ry xo(x))] = [, 2;] € E(G)). (10)

From (8). (9) and (10) it follows that 7 is an isomorphism between G, and G'.
Similarly, it follows that G and G are isomorphic. Since G and G» are also
isomorphic, Proposition 5.3 (a) follows. Thus, we have

A(G) = el(G") = d(G)) = cl(Ga). (1)
The proof of Proposition 5.3(b) starts by observing that
ACTV(G) or ACV(G") for any clique 4 of Gy. (12)

Assume the opposite. Then there exist w,v € A such that v € 17 and v € 15,
By definition of Gy, [u,v] ¢ E( (G). which is a contradiction. From (12} it follows
that (Gr) = el(G') or cl(Gy) = cl(G"). This, together with (11), implies that
l(Gy) = cl(Gh).

6. LEMAIAS

1
Consider the graph L = |J I';, where the graphs I'; are given in Fig. 1. Define:

1=1
M| ={ul xui, i=1,...,7}, M ={v! *z,"f vy*v3}, My = M UM
My={u?sul, i=1,....,7}, M) ={} *11 vl xvs}, Moo= My UMY

M= {vy*vi, vi*vi}, M ={vised vlxel}, Mz=2AuUA:
Al .2 o4 2 ‘4 Artt "2 ‘4 2 ‘.‘ - _ ! ",
;\[4 = {1'3 3 U3, ?,'4 * L-l . A 4 = {15 * 7.;53 1'6 * ?.-6}, 4’\[4 - .‘[l U .‘.[4 '

4

M= M.
i=1
Lemma 6.1. The sets M!, AM['.i =1, 2, 3. 4. are independent in graph L/y;.
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Proof. Observe that {u}....,u}} is an independent set in F1 and {u7,

s

is an independent set in ['>. Thus, A/! is an independent set in /5. Snmlall\ it

follows that the other sets M!. M!" are independent in £/y7. O

Lemma 6.2. cl (L/M) -
Proof. Define

L'=T1Uly, L"=T3UTy. Ly =Ly g,

Obviously.

=L v Ly,
L/\.[ == LI/"[;‘; U f\[]‘

Define the map V/(I'y) 3 V(Ty) as follows:

z 9 @ 9 . -
POl ou Sl i=1,.000,7.

Clearly. ¢ is an isomorphism between I'y and I's. Since M| = {ul x o(ul), i =
1,...,7} and M = {v] * p(v}), vd x @(vd)}, from Proposition 4.1 and Proposi-

tion 5.3(b) it follows that

cl (L'/M]) =3,

Define the map 1 (L'/ A []) S5V (L"/‘.\{Q) as follows:

U 5 U . -
L} — 1,'-3, vf — vf‘, 1=3,....7;
n) L B
ok of S ofeul, vy xvd 5 uf xul;
ul —>u3*u4 t=1,...,T.

Obviously, v is an isomorphism between L’/M1 and L”/M-z- Since
My ={v}=v(]), i=3,...,6} and M,y = {vix¢(?), i
from (13) and Proposition 5.3(b) it follows that

o (L, uan,) = (K, -

By (14) - (16), we have cl (L/ﬁ.[) = J.

(15)

(16)
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7. PROOF OF THE THEOREM

) Proof of the inequality F(4.4:5) 2 16. Let G be i graph such that G — (4. 4)
and cl(G) < 5, i.e. cl(G) = 4. We need to prove that ;V(G)| 2 16. Observe that
IV(G)| = F(4.4;6). Since F(4,4;6) = 14, [5], we have [V(G)} 2 14. From cl{G) = 4
and R(5.3) = 14, [2], it follows that a{G) 2 3. Let {vy.v2.v3} be an independent
set in . Then G' = G — {v1. 1o, w3} — (3.4) and cl(G') = 4. By F(3.4:5) = 13.
8], we have |V(G')| =2 13. Hence, |V(G)| 2 16.

IT) Proof of the inequality F(4.4;5) £ 35. Consider the graph R = Q/_.\.p where
the graph @ is defined in Section 4 and the set A is given in Section 6. Let
Ry = R - {a;.as,as,a4}. Observe that

Ry = Ky +L/y;,  where V(K;) = {b} and (17)
Lyys is defined in Section 6.

By Proposition 4.3 and Proposition 5.1, we have R — {(4.4}. We prove that
cl{R) = 4. Assume that cl(R} 2 5 and let 4 C V(R) be a 3-clique of . By

Lemma 6.2, ¢l (L/M) = 3. Since Ng(h) =V (L/‘,u), this implies that b ¢ 4. From
(17), el (L/M) =3 and b ¢ A it follows that [V(R,) N 4] < 3. Hence,

‘.40{(11.@2,03,(11” 22 (18)
Observe that
Nr(a)) N Nglay) = M, U {(137 04} = (J\[{ U {61.3}) U (;\[1” U {CL;}). (19)

By Lemma 6.1, M| and M{" are independent sets. Since M| N Ng(az) = @ and
M]'NNg(ag) = 0, the sets M{U{asz} and M{'U{as} are also independent sets. Hence
MiU{as, as} contains no 3-cliques. Thus, (19) implies that {a;, a2} g A. Similarly,
it follows that {a;,a;} € A, Vi # j. This contradicts (18) and proves cl(R) = 4.
So. R — (4,4) and cl(R) = 4. Since |V{(G)| = 35, we have F(4,4:5) < 35. O
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