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The infinitesimal rigidity of hypersurfaces in R n > 3, is considered. In section
1 we remind some definitions in the theory of the infinitesimal bendings (inf. b.). In
section 2 we discuss the results in the papers [5 - 9]. In section 3 we consider our main
result in the paper {10] and we give some geometric interpretations of the investigations
in [10]. Finally we consider an example.
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1. INTRODUCTION

The theory of the bendings of the surfaces is one of the most important sections
of the classical differential geometry. The first definitions of the notion bending of
the surfaces are in some 19th century works and concern only 2-dimensional sur-
faces in R® (3-dimensional euclidean space). In these works the difference between
bending and infinitesimal bending was not made. First Darboux in the end of the
19th century pointed out the difference between these two notions. The first results
of the infinitesimal bendings (inf. b.) of the surfaces in R?® belong to Cauchy (1813)
- for a closed convex polyhedron and to Liebmann (1901, 1919) - for an analytic
convex surface. During the 20th century too many results on the inf. b. of the
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surfaces in R"*" have been obtained (see {1 - 4]). In this paper we shall discuss the
inf. b. of the hypersurfaces in R™* n > 3. First we shall give1 some definitions.
Let S:r=r(ul,...,u"™) be a smooth hypersurface in R™ and let

StZT't=T+2tU+O(t), t——>0,

be an infinitesimal deformation of S. Let ¢ be an arbitrary smooth curve on S and
let ¢; be its corresponding curve on S;. We denote the lengths of ¢ and ¢; with [
and [, correspondingly. The infinitesimal deformation S; is called an inf. b. of S if
the equality )

lt -1l = O(t), t — 0, (11)

is true, i.e. the vector field U of inf. b. satisfies the equation

drdU = 0. (1.2)
The field U of inf. b. is called trivial if it has the form

U=0r+uw, (1.3)

where (2 is a constant skew-symmetric matrix and w is a constant vector. If the
equation (1.2) has, under some conditions, only a trivial solution, i.e. the vector
field U is of the form (1.3), then the hypersurface S is called infinitesimally rigid
under these conditions.

2. THE RESULTS IN THE PAPERS [5)-[9]

There are 6 known papers ([5] - [10]) on inf. rigidity of hypersurfaces in
R™1 n > 3, in the literature. The first results concerning inf. rigidity of hypersur-
faces belong to Sen’kin [5]. He investigated inf.b. of general convex hypersurfaces,
i.e. the convex hypersurfaces for which smootness was not assumed. The theory of
inf. b. of such surfaces in R® was developed by A. D. Alexandrov (1936). Sen’kin
used this theory and the results of A. V. Pogorelov (1959) for inf. b. of general

convex surfaces in R® and proved ([5]) the following

Theorem 2.1 (Sen’kin, 1972). A closed convex hypersurface S in R"H, n >3,
which does not contain flat n-dimensional domains is infinitesimally rigid. If S
contains n-dimensional domains it is inf. rigid outside of these domains.

Theorem 2.2 (Sen’kin, 1975). A closed convex hypersurface S in R"“, n > 3,
which does not contain flat n-dimensional domains is inf. rigid in neighborhood of
each point, which does not lie in a flat (n — 1)-dimensional and (n — 2)-dimensional
domain. If S contains flat n-dimensional domains, it is inf. rigid in neighborhood
of the indicated points outside of the flat n-dimensional domains.
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In 1975 Goldstein and Ryan, usm% the theory of the conformal vector fields,
proved ([6]) that the sphere S™ in R™* n >3, is inf. rigid and in 1980 Nannicini

proved ([7]) that a C* smooth compact strictly convex hypersurface in R™ ">
3, is inf. rigid. It is obvious that these two results are contained in Theorem 2.1 of
Sen’kin.

In {7) Nannicini proved the following

Theorem 2.3 (Nannicini, 1980). Let S be a (n — 1)-dimensional C*® smooth

compact strzctly convex surface which lie on a hyperplane R" C R* n > 3.
Let p = R™" be a subspace of R™ and SN i = @. The rotation hypersurface
S =38 x 8! in R™" obtained by rotation of S around p is inf. rigid.

In {8] Markov proved the following

Theorem 2.4 (Markov, 1980). Let S be a C* smooth hypersurface in R™ ,n >
3, with type number 7 > 3, i.e. S has at least 3 nonzero principal curvatures at
each point. Then each neighborhood on S of every point of S is inf. rigid.

This result of Markov is infinitesimal analog of the well known classical result of
Beez (1876) and Killing (1885) for isometric rigidity of hypersurface S in R™*
3. The surface in theorem 4 can be compact or noncompact.

In [9] Dajczer and Rodrigues prove the following

Theorem 2.5 (Daiczer, Rodrigues, 1990). Every smooth compact hypersur-
phace in R"H,n > 3, which does not contain flat n-dimensional domains is in-
finitesimally rigid.

This result is an infinitesimal version of a very beautiful result of Sacksteder
(1960) for isometric rigidity.

3. THE MAIN RESULT IN THE PAPER [10]
AND SOME GEOMETRIC INTERPRETATIONS

In the paper [10] we obtain sufficient conditions for inf. rigidity of a class
of hypersurfaces with boundary in RnH,n > 3, which are projected one-to-one

orthogonally on a region G in a hyperplane. Such a hypersurface S is represented
by:
S: 2" = f(z),z = (z',...,2") €G (3.1)

We assume that G is a bounded finitely connected region with piecewise smooth
boundary 8G = I and the function f(x) and the field U(z) (¢ Yz),...,6"(z),((z))
of the inf. b. of S belong to the class C3(G). We assume that the inequalities

f888 > 0, f388 facp—fass > 0 (respectively fsgg <0, fgsfaap—fops > 0) (3.2)
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are fulfilled on a set 503 everywhere dense in G = GUOG, B:=a+1,
a=13,..,n—3,n—1fornevenand a=1,3,....,n—2,n—1 for n odd. Here we
denote with f3, fga, f383, --- the partial derivatives fiu, frspo, fzug sz, .... Further
our presentation will be for n even - when n is odd the things are analogous.

We shall give a geometric interpretation of the inequalities (3.2). L-t. P(a!,a?, ...,
a™) be an arbitrary point of G. We consider, for fixed a € {1,3,...,n-- 3,n— 1}
and 8 = a + 1, the 2-dimensional surface $*% = SN wa, where Rid is the 3-
dimensional plane which contains P and is parallel to the coordinate 3-din.entional
plane O, e, ,.- The surface S® has the representation

- —=P =5 3 o .
5§90 . gt = f(al,...,a%" 1, 2%, 2% a®*?, . a"), (2*,2°) € Gop = GﬁRaﬁ (3.3)

with respect to the coordinate system O, , . .., O0'(a!,...,a®"1,0,0,a%*2,...,a".0 .
The following statement is valid

Proposition 3.1. Let S be of the class (3.1). (3.2). Then the surfaces

§5% 2™ = fa(a’,...,a" 1 2% 2%, 02, L 0"), 0 € {1,3,...,n—3,n~1}, B = a+1,
(3.4)

have Gaussian curvature K > 0 on w‘l(éf_ 5) = w“l((":ﬂRzg) 2 and they are convex
(correspondingly locally convex) if Gfﬁ =GN Riﬁ is convex (corr<spondingly
NONCONVET).

Proof. From (3.2) for the sign of the Gaussian curvature K of Sg‘ﬁ on iw~! (éf 3)
we have
sgn K = sgn (fgsp.paa — ffap) > 0- (3.5)

Let Gfa =GN Ria be convex. For fixed @ € {1,3,....,n—-3,n~1} and = a+ 1
we consider the quadratic form

C(€ar€8) = faaaba + 2fpapbpla + fa83Eh 13.6)

of the function fz(a',...,a®"1, 2% 27,a%*2, ... a"). From the inequalities (3.2) it
follows that quadratic form (3.6) is nonnegative (nonpositive) in 5:5. Hence th-
function fg(al,...,a® !, 2%, 2% a2*2 .. a") is convex. Therefore the surface 83"
is convex.

Let G(’i(, =GN Ri,@ be nonconvex, where a € {1,3,....n — 3,n — 1} is fixed.
# = o + 1. For every point of Gfa we take a convex neighborhood and repeating
the above reasonings we obtain that the surface S§3 is locally convex.

Let us consider the curve cgﬂ = Sgﬁ N Rz, where Rg is 2-dimensional plane

across an arbitrary point of 5'23 and is parallel to O e, ,. Let v ... be the normal
[t}

. . +1
2We denote with 7 the orthogonal projection R™ L R" = Oe,,....e0-
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(L

curvature of cgﬁ relative to the unit normal vector ! to Sgg for which (I, ent1)e < 5

We have
sgn (fapp) = sgn (Vc;u) (3.7)

on w“l(éfﬂ ﬂR;) Then from (3.2), (3.5) and (3.7)we obtain

Corollary 3.1. If S is of the class (3.1), (3.21) (correspondingly (3.1), (3.22).
then the surfaces Sg‘a,a =12,....,n—=3,n—1, 8 =a+ 1 are convex below (cor-
respondingly above). '

Let 7 = (7!,...,7") be the unit vector of the exterior normal to 8G = I". Then
nY = cos§?, where 87 = (e,,n)e and e, is the unit vector of the axis Oz7,vy =
1,...,n. We decompose ([10]) the smooth parts of I' [Sfor fixed a € {1,3,...,n —
3,n— 1} and § = a + 1) in nonintersecting subsets [';",i = 1,2, 3, 4, as follows:

1) on [“fﬂ : H*PRB >0, fgpn® > 0 (respectively H*P7P < 0, fapn® < 0);

(a) H*PRP < 0, fﬁpﬁp <0

(respectively H*Pn? > 0, fggn® > 0) or

b)ﬁ'3 =0, fgg#0 or 18 = 0, fap =0, fapn® >0
 (respectively 7° =0, fgg #0oriif =0, fag =0, faphi® <0);
3) on TSP : H*PRP <0, faaf? > 0 (respectively H*P7P > 0, f357° < 0);
(a) 7P # 0, H*PRP >0 fan° <0

(respectively 7 # 0, H*nP <0 fzanP > 0) or

b)7P =0, fap=0, fopn® <0

 (respectively 7% =0, fgg =0, fasni® > 0);

where H? = f33(11%)% — 2f0gn°0P + fou(P)2.

The decomposition of I' = G induces corresponding decomposition of the
boundary 85§ = w~!(8G) in nonintersecting parts SI‘?‘G =71 (7)1 =1,2,3,4,
which depends only on the geometric properties of 8S. Indeed, a) ¥ = cos 67, 6° =

(eg,M)e, N® = c0s8%,0% = (eq,M)e ; b) sgn H*P = sgn ulf’ﬁ, where ulf'ﬁ is the normal
curvature to the curve ¢®? = 9§ N Riﬁ relative to unit normal vector [ to the

2)onT3? :

—

4) on TSP : ¢

L m . ; : :
surface S for which (l,ep41)e < 3 (c®® has equations ' = ¢ = const, i =
L,...,n+1, i #a,pB, z*=1%s), z° =20(s), ¢*P(0,...,0,2%(s),37(s),,0,...,0)
and #* = 0P, ©® = —0on®, o # 0, since Lc*?, where ¢®® = 7(c*?) ); ¢) fag is
the normal curvature of the z%-line on S relative to ! and fap is the polar form of

the second fundamental form relative to [ for z®-line and z?-line of S in the points

of 98S. .
Let L C S be a surface of dimension k, 1 <k <n-—1. Everyinf. b. S; of S
with a ﬁelgl U which satisfies the condition

Uent1lL =0  (respectively Uent1|r = const) (3.8)

is called inf. b. with sliding (respectively generalized sliding) along L with respect
to v = Oz'...x™. Let L, be the orthogonal projection of L on 7 i.e. Ly = w(L).
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We shall call z? - inf. b. along L with respect to 7 every inf. b. S; of S for which
the field U of inf. b. satisfy the condition

(Uens1), L, = 0. (3.9)
We denote
SPIS — U (SP?B U 51‘«3!5)’
a=13,....n—3,n—-1
B=a+1
SF4 — n SF‘:B,
CY=1,3, ,n—3,n 1,
B=a+1
SFI — U Sl'\i'ﬁ_
a=13,...,n-3,n—1,
B=a+1

We proved in [10] the following

Theorem 3.1. The hypersurface (3.1),(3.2) is rigid under inf. b. with sliding
(or generalized sliding) along ST'13 with respect to the hyperplane v and z8 - inf. b.
along ST$? U SFgﬁ,a =1,3,..,.n-3,n—1, B=a+ 1, with respect to v.

Remark. There are ([10]) m < % conditions on the field U of the inf. b. at
every point P € 85, P ¢ ST, since there are 5 decompositions of the boundary
0S. Certainly we assume that these conditions are consistent.

We denote with Srg‘{’ fora € {1,3,...,n—3,n— 1} and 8 = o+ 1 this part
of 5T g'f’, whose orthogonal project on the hyperplane v = 0e; ... e, is composed of
(n — 1)-dimensional planes parallel to the coordinate vectors eg, § = 2,4,...,n or

it is composed of (n — 1)-dimensional ruled surfaces, whose generatrixes are parallel
tolg, 8=2,4,...,n. Let

5Ta1 = U Srgl.
a=13,...,n—-3,n—1,
B=a+1
Then we have

Corollary 3.2. The hypersurface (3.1), (3.2), which has a boundary 0S =
STy U ST9y U STy is migid under inf.b. with sliding (or generalized sliding) along
0S\STy with respect to the hyperplane 7.

Corollary 3.3. The hypersurface (3.1), (3.2), which has a boundary 0S =
SF] U Srgl U SF4 18 T‘igid if the part SF] U Sr‘g] Of 35 8 ﬁ:red
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4. AN EXAMPLE

The hypersurface

Szt = > [(2F1)3 + 2o+ (2%)?] + (2?)%, z = (z),...,2") €G
a=1,3,....n-3,n-1
is of the class (3.1), (3.2) since

fass =6, fssfpaa — fGga =12, @=1,3,...,n—-3,n—1, F=a+1.

It is not from Beez-Killing’s class. Its type number 7 for example at the point
0(o0,...,0) is 1.

Let n = 4 and G be a 4-dimensional cube, i.e.

S : 2% = (22)3 + () + 22(2")? + 2% (2%)? + (2')?, (4.1)
G={@, ..z eR*:-1<2'<1,i=1,..,4}.

We have U(¢!(z),...,£4(z),{(z)), = = (z!,...,z%), and:

(8) fa2 = 622, fia = 23, faq = 62?, fa4 = 22%;
(b) H? =6z%(n')? — 4z'n'n? + (2:1: +- 2)(n2)2
H3 = 624(7%)? — 423304 + 224 (7)?;
4
() 8G =Y 8GF,
i=1
aGi szl =+1,-1< 22,23, 14 < 1,
6Gi cr? =+1,-1< 2", 23,24 <1,
BGi 3 =41, -1< 7!, :1:2 zi <1,
Gy : xt = +1, —1<a: 22,23 < 1;
ﬁlacg:(o,o,:tl,O), ﬁ[acf(o,o,o,il).
From 1) - 4) and (a) - (d) we find

dGY CTY, GT\of cTI3!, 6Ff cTy, 67 :{2'=0, (4.2)

OGE c T2, 8GE\6F ¢T3, o T3, 6F: {2 =0, (4.3)

T
GF\65 CT3?, 6Ff cT? 65:2?

Tt = +1,
aaf\o* ci? 6f cTi?, 6f:{z?=0, , 0Gf ¢T3, (4.5)
-1<z',28<1
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We note that:

ap) if C'oct = const then (; = (4 = 0 since IG5 ||0x?, Oz*;
bp) if C'aG:l: = const then (4 = 0 since 6G [|Oz?;

¢y) if (laG:b = const then (; = (4 = 0 since G¥||0x?, Oz*;
dy) if Clac:t = const then (3 = 0 since G7 ||Oz?;

From Theorem 3. 1, (4.2) - (4.5) and a;) - d;) we obtain

Proposition 4.1. The hypersurface S (4.1) in R® is rigid under inf. b. with

sliding (or generalized sliding)along its boundary 3S with respect to the hyperplane

v = Oz'z%x
Proposition 4.2. The hypersurface S (4.1) in R® is rigid if its boundary S

234

is fized.

10.
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