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We find a rotated hypersurface M™ whose induced metric from R™! is isometric
to metric of IP manifolds and therefore the hypersurface is conformally flat. In the
case of 4-dimensional hypersurface with IP metric we have presented explicitly a skew-
symmetric curvature operator and have proved directly that its eigenvalues are point-
wise. We find the mean curvature of the hypersurface.
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Let V be the Levi-Civita connection of a Riemannian manifold (M™,g). Let
z,y and z be tangent vector fields on M™. Then the associated curvature tensor
R(z,y, z) is defined by

R(z,y,2) = ViVyz =V Vo2 =V, 2.

The value of R(z,y, z) at a point p of M depends only of values of z,y and z at p.
The skew-symmetric curvature operator K , is defined by

Ky(u) = R(z,y,u)

for any orthonormal pair (z, y) of tangent vectors at any point pin M and u € T, M.
It is easy to see that the curvature operator K , does not depend on the orientated
orthonormal basis which is chosen for the orientated 2-plane E? = span{z,y} [1].
A unit vector u is an eigenvector to K, with the corresponding eigenvalues c iff

K, y(u) = cu,
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where, generally, c is a function of the point p and the plane E?, ¢ = c¢(p; E?). G.
Stanilov first has stated a problem for the investigation of Riemannian manifolds
of pointwise constant eigenvalues of K, [5].

In (4] Ivanov and Petrova have given a local classification of four dimension
manifolds, where the skew-symmetric curvature operator K , has pointwise eigen-
values:

Theorem 1. Let (M, g) be a four dimensional Riemannian manifold such that
the eigenvalues of the skew-symmetric curvature operator are pointwise constants
at any point p of the manifold M. Then (M,g) is locally (almost everywhere)
isometric to one of the following spaces:

a) real space form;

b) a warped product B xp N, where B is an open interval on the real line, N
18 a 3-dimensional space form of the constant sectional curvature K, and F is a
smooth function on B given by F(u) = vVKu? + Cu+ D, K,C, D being constants
such that C* — 4K D # 0.

We say that (M, g) is IP if the eigenvalues of K , depend only on the point p
in M and do not depend on the plane E? = span{z,y}.

This result is generalized for n-dimensional manifolds for n > 4 and n # 7 by
Gilkey, Leahy and Sadofsky in (3], [2].

Later, we are going to give an example of a rotational hypersurface in R"H,
whose induced metric from R™" is isometric of IP n-dimensional manifolds.

Every rotated hypersurface M™ in R™*! can be represented locally by

(! = f(u!)sin(u?)sin(u?)...sin(u),
2 = f(u')sin(u?)sin(u?)...cos(um),
. 1
< g = f(u')sin(u?) cos(u?), W
g = f(u')cos(u?),
[ 2™t = h(u!),

uiGJi, J,'CRI, 1=1,...,n.

We write
o= (z!2?,..., 2", 2", 2" HY),
o=z (ul,e?,. "), i=1,...,n+1.
Suppose that
u! 2
h(u') = ¢ \/1— (d‘z(:)> dv, €= +1, (2)
u}

or

(%) (%) =
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This means that u! is a natural parameter of the curve

(2! = f(ul)a
2 = 0,
ci - @)
" = 0,
| 2"t = h(ul).
Let
f') = Vaq(u'), g(u') >0, u' € /. (4)

Then we can evaluate h(u!) from (2).
Below, we will consider a rotational surface generated from the rotation of a

curve that satisfies conditions (2) and (4).
Oxr Oz

dur dud
metric tensor g of surface M, induced from the inner product of R™!. The matrix
of g is ‘

Using that g;; = , we can evaluate directly the components of the

1 0 0 0 \
0 gq(ul) 0 0
0 0 gq(u!)sin®(u?) 0
0 O 0 0 (5)
0 0 0
\0 0 0 o g(ud)sin®(u?)...sin?(u™" 1)smz(u")}

Therefore, the metric of the rotational surface given by (1) coincides with the
metric of a warped product B! x, S"~!, where B is an open interval in R and
S™~1 is the (n — 1)-dimensional sphere. The radius of the sphere $"~! is 1.

If we set g(u!) = (u!)24+C(u')+ D, C?—4D < 0, the metric of (1) will coincide
with the metric of IP manifolds which are not with constant sectional curvature.
This kind of rotational surfaces we will call rotational IP hypersurfaces

We can check directly that for rotational IP hypersurfaces in R generated
by the rotation of the curve (3) when g(u!) = (v')? + Cu' + D, it holds that the
skew-symmetric curvature operator has pointwise eigenvalues. For this purpose we
are going to use a local parametrization of 4-dimensional hypersurface. Explicitly,
the parametrization of this surface is

’

((u')? + Cu! + D) sin(u?) sin(u 3) sin(ut),

((u!)? + Cu! + D)sin(u?)sin(u?) cos(u?),

((u!)? + Cu! + D)sin(u?) cos(u?), (6)
((u!)? 4+ Cul + D) cos(u?),

5 _ %\/41) — C?*In(C + 2(u' + v/(u1)? + Cul + D)).

W N e
I

8B 8 8 8

8
|

Ann. Univ. Sofia, Fac. Math. Inf., 97, 2005, 135-141. 137



Its metric tensor g is

1 0 0 0
0 q(ul) 0 0
0 0 q(ul)sin®(u?) 0 ’
0 0 0 g(u!) sin?(u?) sin?(u?)
where g(u!) = D + Cu! + (u!)2. The inverse matrix g~ of g is
(1 0 0 0 \
0 ! 0 0
D + Cu! + (u!)?
csc?(u?)
0 0 D+ Cul + (@) 0
2\ a2 (g3
\0 0 0 csc?(u?)esc?(u?) )
D + Cu! + (u!)?

When we have the metric tensor of a given manifold, we can calculate the
Christofel symbols I‘f'j and the components of the curvature tensor Rﬁj . on the

following way:
1 i (09k , Ogix  0gij
k _ L hk j 99
Fij = 29 (au‘ TP T Buk )
R = ar.‘ik _ arik
kT oui Qw

s il st
+ijrsi_ kirsj'

After some algebra we find that the sectional curvature k; ;, 4,7 = 1,...,4, of
two-dimensional planes given from the base vectors 631’ 502 53’ Dl is
b = C?—-4D
2T 4D+ Cul + (u)2)?
k. = C?—-4D
b7 4D+ Cul + (@)?)?’
k. = C?—-4D
M7 4D+ Cul + (u1)2)?
ke = — C?—4D
2377 4D+ Cul + (u)2)?
bt = C?—-4D
24 & 4(D + Cu! + (ul)2)?’
C?-4D
kzqa =-—

4(D + Cu! + (u1)?)?’
Using the components of the curvature tensor, we can find the matrix of the

skew-symmetric curvature operator K, ., i # j, i,j = 1,...,4, where e¢; =
0
, 1 = 1,...,4, relative to orthonormal base ¢;. For example, the

Vo
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matrix of Ke, ¢, is

C?-4D
,O —sprca+@nnz 0 O
C?-4D
Keyer = A(DFCuT+(u)9)? 0 0 O (7)
0 0 00
0 0 0 0
The eigenvalues A;, i = 1,...,4, of this operator are
. 2 - . 2 _
A =0, Aa=0, A= G —4D) N = i(C? = 4D)

4(D + Cu! + (u')?)?’ 4(D + Cu! + (ul)?)?’

In a similar way, the matrix of the skew-symmetric curvature operator K, e,

C2—-4D

0 0 ~awCa ey 0
Koo = | i @
*% 7\ aorcaramyr O 0 0
0 0 0 0
The eigenvalues of this operator are
. 2 _ . 2 _
’\l = O, /\2 = 0, As = 1(C 4D) A‘ = 3(C 4D)

4(D + Cul + (u1)2)?’ ~ 4(D + Cu! + (u1)?)?”

In general, let us consider two orthonormal vectors a,b € T, M, i. e.
a =a'e;, b=ble;,
g(a’ a') =1, g(bv b) =1, g(a, b) =0. (9)

Then the matrix of the skew-symmetric curvature operator K, , with respect
to the orthonormal base e; is

0 a?b! —ald? @b —a'b® adh! - alb?
—a®b! + a'b? 0 —-a3b? + a?b®  —a'h? + a?b*
Kup=k| _ 3 +alb® @32 - a2 0 —afb3 4+ adbt | (10)
—a'®' +albt a'h? —a2b®  adbd — ot 0
2 _
where k = itk

4(D + Cul + (ul)?)?”
The eigenvalues of the curvature operator K, , are

A =0, A2=0,
B i(C? — 4D) - i(C*-4D)
As = 4(D + Cul + (ul)?)? VA, A= ~4(D + Cul + (u!)?)? v4,

where
A= (a)?(")? + (@')’(t*) + (a*)2(b?)* + (a)2(b%)?
+(ad)2(b3)2 — 2aladpipd + (a1)2(b4)2 - a3b3(albl + a4b4)
—2a%0%(a'b + a3b3 + %) + (a®)2((61)2 + (62)2 + (b1)?)
+(@®)*((6')? + (%)% + (6%)?).
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Using (9), we obtain that A = 1. Therefore, the eigenvalues of the operator
K, , do not depend on the two-dimensional plane determined by the vectors u, v.
We are going to generalize the derived results in the following

Theorem 2. The rotational 4-dimensional hypersurface given by (6) has point-
wise eigenvalues.

We can prove directly also the similar results in dimensions 3, 5, 6, 7.
Let us point out that the two-dimensional IP hypersurface in R

((u!)? + Cu! + D)sin(u?),
22 = ((u")?+ Cu' + D)cos(u?),

b= %\/40 ~C?2In(C + 2(u' + /(u})? + Cul + D))

H)-I
I

8
|

has a vanishing mean curvature, i. e. this is a minimal surface in R®.

But we prove directly that when we have k-dimensional IP rotational surfaces
for n = 3,4,5,6,7, they are not minimal. More exactly, the mean curvature H of
n-dimensional IP rotational surfaces is:

v~C? +4D
((u!)?2 + Cul + D)

H=(n—2)2

We remark that the IP rotational hypersurfaces are conformally flat as rota-
tional hypersurfaces. We can also see this from (5) or, using the local parametriza-
tion of the IP rotational surfaces, we can directly evaluate the components of the
Weyl tensor Wi i and find that Wi = 0.

We have used computer for some of the evaluations above.
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