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Using the algebraic structure of cyclic codes, it is proved that the cyclic codes with one
and the same generating polynomial have equal weight distribution of cosets’ leaders.
As an illustration,the weight distribution of the leaders of the cosets of all ternary cyclic
codes with generating polynomial of degree less than 6 is presented.
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1. INTRODUCTION

Let C be a cyclic code of length n over the finite field F, = GF(q). Let us
consider the standard correspondence between a vector from n—dimensional vector
space F;" and a polynomial from the ring of the polynomials F|[z]

v= (v, V1,...,Un-1) 2 0(Z)=ar+ a1z + - + ap_1z™ L.
A generator polynomial g(z) of code C is a nonzero polynomial of the smallest
degree of code and ¢ € C if and only if g(z)|c(z). If C is a cyclic [n, k] code with
the generator polynomial g(z), then the degree of g(z) is m = n—k and the number
of cosets a + C of code C is equal to ¢™.

Leader of a coset a + C is the vector with the smallest Hamming weight in
that coset and by wt(a + C) we denote the weight of the coset leader a + C, i.e.
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wt(a + C) = min{wt(z)|r € a + C}. The covering radius of the code is the weight
of the leader with maximum weight. The covering radii of some binary and ternary
cyclic codes are determined in (1}, [2], (3], [4], [5], [6], [7]-

Some applications of codes require the knowledge of not only the covering
radius but also of spectrum of leaders of all cosets of a code. Let us denote by w.
the number of cosets a + C for which wt(a + C) = e. It is clear that wy =1 ;
wo + wi + ... + wn = ¢ % and w, = 0, for every ¢t > n — k. The spectrum of the
of cosets leaders of the code C is w(C) = (wo,w1,...,wWn—k). In [8] a method for
computation of weight distribution of spectrum of coset leaders of an cyclic code is
presented.

In all the known tables the cyclic codes are grouped by the code length and
by the roots of the generating polynomials. It is proved in this paper that there is
a connection between spectrum of coset leaders for cyclic codes over a finite field
GF(q) with equal generating polynomial and non equal lengths. As an illustra-
tion,the weight distribution of the leaders of the cosets of all ternary cyclic codes
with generating polynomial with degree less than 6 is presented.

2. COSETS OF CYCLIC CODES WITH EQUAL GENERATING
POLYNOMIAL

Let C be a cyclic [n, k| code over the finite field with g elements F;. The
generator polynomial g(z) of C is of degree deg(g(z)) = n — k, g(z)|(z™ — 1) and
h(z) = %‘éjl is a parity check polynomial of code C. |

Let ng be the smallest integer such that g(z)|(z™ — 1) and Cp is the cyclic
code with length ng and generator polynomial g(z). From ged(z™ — 1,27 — 1) =
£9¢4(mm0) _ 1 we obtain that ng|n. If n = s.np then the parity check polynomial of
code C'is n

e A |

M) = g(z) T -1 o

and the dual of the code C is s times repeated the dual of code Cj.

Theorem 2.1. Let C be a cyclic [n, k] code with the generator polynomial g(x)
and let ng is the small integer such that g(z)|(z™ — 1). If the Cy =< g(x) > is
the cyclic code with length ng and the generator polynomial g(x) then the spectra
of cosets leaders for codes C' and Cy are equal w(C) = w(Cp).

Proof. Let a € F;™" and d be the extended vector @ = (a,0,...,0) from FJ'.
Let a correspondence ¢ : {a + Cola € F;"} — {a + Cla € F;"} between the
cosets of code Cp and C be defined as ¢(a + Cy) = a + C. Then it is clear that
bea+Co< bed+ C. Hence the correspondence  is a bijection as the number
of cosets of codes C and Cj are equal.

For z = (29, ..., 2n—1) € F,", let us consider the vector 2" = (y0, ..., Yng—1) €
F,™, where yi = 2i + Zigng + o + Zip(s—1)n, for all 2 € {0,...,n0 — 1}. It is
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clear that if y; # 0 then wt(z;) + wt(zign,) + ... + Wt(Zit(s—1)n,) = 1. Hence
wit(z{™)) < wt(z). The polynomial z("0)(z) is the remainder of the division of z(z)
by z™ — 1. Therefore ) ¢ x4+ C. Ifa € F,™ is the leader of the coset a + Cp
then wt(¢(a + Cp)) < wt(a). Let z be the leader of p(a + Cp) then z(™) € a + Co
hence wt(z) > wt(a + Cp). Therefore wt(a + Cp) = wt(p(a + Cp)) . O

From that theorem we can conclude that if C7 and C> are two cyclic codes
with different lengths but with one and the same generator polynomial g(z) then
w(Cl) = UJ(C2).

3. COSET LEADERS WEIGHT DISTRIBUTIONS OF SOME TERNARY
CYCLIC CODES

As an illustration of the previous section we calculate the coset leaders weight
distributions of some ternary cyclic codes with generator polynomial of degree< 5.
For the calculations we have used mostly the definition of the spectrum of the coset
leaders and the following methods:

Method 1. If the linear [n,k] code C over F, has a parity check matrix H
and a € F,",a ¢ C then wt(a + C) is the least integer e such that the syndrome
S(a) = Ha' can be represented as a linear combination of the e from the columns
of matrix H. So, we can calculate the coset leader’s spectrum if for any nonzero
syndrome S calculate the minimal number of columns of H that linear generate S.

Method 2. In [8] is considered the action of the cyclic group G, =< o > (0 is
a cyclic shift of coordinates) with n elements on the cosets of one cyclic [n, k] code
as o(a + C) = o(a) + C. This action splits the cosets in disjoint orbits and from
[8] it is clear how to obtain one representative from each coset.Thus we calculate
the weight of the coset leader only for one coset from each orbit.

Let C be a cyclic code with generator polynomial g(z) and the minimum length
of cyclic code with generator polynomial g(x) be ng. In the following tables are
presented basic parameters of some cyclic codes . In the tables the polynomials are
represented by their coefficients, namely g(z) = go + 17 + ... + gm2™ is given as
a string gogi...gm-. As the reciprocals polynomials generate equivalent codes, the
table contains only one from any couple of such polynomials.

3.1. SPECTRUM OF COSET LEADERS FOR IRREDUCIBLE POLYNOMIALS

Let g(x) be an irreducible polynomial over F, of degree m. Then g(z)|(z¢" ~* ~
1) and if ng is the smallest integer such that g(z)|z™ — 1, then ng|(¢g™ —1). Let «
be a root of g(x) and Cp be the cyclic [ng, no — m] code, with generator polynomial
g(z), then a parity check matrix of code Cp is the following H = (1, @, @?, ...,a™™1).
A polynomial g(z) for which is hold ng = ¢ — 1 is called primitive polynomial
and every parity check matrix for the code with length ¢™ — 1 consists of every
nonzero vector column from F7" . Hence for that code spectrum of coset’s leaders
is (1,g™—1,0,...,0). If C; and C> are [n, k] cyclic codes generated with irreducible
polynomials of degree m the codes C; and C5 are equivalent.

The table from [9] was used as a source for all irreducible polynomials over Fj.
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TABLE 1. Coset leaders weight distributions of irreducible ternary cyclic codes with generator

polynomial of degree < 5

N | deg polynomial n k d |R Spectrum
1] 1 21 n n—1 2 |1 (1,2)
2| 1 11 % | 2s—1 | 2 |1 (1,2)
3| 2 101 is | ds—2 | 2 |2 1,4,4)
il 2 211 8 | 8s—2 | 2 |1 (1,8,0)
5 3 2201; 2111 135 | 135s—3 [3or2|1| (1,26,0,0)
6] 3 1201;1211 26s | 265 —3 2 1 (1,26,0,0)
71 4 11111 5 | 5s—4 |50r2|3]| (1,10,40,30,0)
8| 4 12121 10s | 10s —4 2 3| (1,10,40,30,0)
91 4 20201 16s | 165 —4 2 2| (1,16,64,0,0)
10] 4 12011 s | 20s—4| 2 |2| (1,20,60,0,0)
11| 4 10111;12101 40s | 40s —4 2 2| (1,40,40,0,0)
12| 4 pnioigy | 80s|80s-4| 2 |1] (1,80,0,0,0)
13] 5 221201 1is | 11s—5 |5 or 2| 2 | (1,22, 220,0,0,0)
14| 5 122201 228 | 225 -5 2 2 {(1,22,220,0,0,0)
220001;211001;210101;
| 5 {000 |l 200,000,
212021;211121
120001;112001;110101;
102101;122101;112201;
16| 5 120011;111011:121111; 24252425 - 5| 2 1] (1,242,0,0,0,0)
112111;122021

3.2. SPECTRA FOR REDUCIBLE POLYNOMIALS WITHOUT MULTIPLE ROOTS

If g(z) is a reducible polynomial over F; and it does not have multiple roots
then for the minimum integer ng for which g(z)|(z™® — 1) is hold ged(g,no) = 1. If
« is a primitive n—th root of unity in some field F,: then all zeros of g(z) will be
a®,...,at . It is known that if C; and C; are cyclic [ng, no —m] codes and the sets
of roots of the codes C; and C, are, respectively, o1, ...,a*" and a’!,...,a’" and
there exists a integer v, such that ged(no,v) = 1 and js = v,1, for s € {1,...,m}
then the codes Cy and C; are equivalent. In that table we omit all equivalent codes,
obtained by the upper procedure.
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TABLE 2. Coset leaders weight distributions of ternary cyclic codes
without multiple roots and generator polynomial of degree < 5

No|deg| polynomial n k d |R Spectrum
T2 201 3% [ 2s=2 ] 2 |2 (1,4,4)
213 1111;2121 4s | 4s—3 |dor2|2 (1,8,18,0)
313 1101; 2021 8 | 88 —3 |30r2;2 (1,16,10,0)
14 20001 Is | ds—4 | 2 |4 (1,8,24,32 16)

51 4 10001 8s | 8s—4 | 2 [4] (L8,24,3216)
614 2111 8s | 8s—4 [dor2|3| (1,16,60,4,0)
714 21011 85 | 8s—4 [dor2|3] (L 16,60,4,0)
8] 4 | 10221;11001 | 13s | 13s—4 [3or2|3| (1,26,52,2,0)
9 | 4 | 10211;10021 | 26s [ 265—4| 2 3] (L,26,52,,0)

10 [ 4 | Jooor ooror | 265 | 26s—4 [30r2]2| (1,52,28,0,0)
|5 500001 55 | 55—5 1 2 |5 [(1,10,40,80,80,32)
12| 5 | 111201;201121 | 8s | 8s—5 |50r2]4|(1,16,112,108,6,0)
13| 5 | 210021;110011 | 8 | 8s—5 |d4dor2|4| (1,16,82,696,48,0)
TG 100001 [ 10s | 10s=5| 2 |5 (L, 10,40,80,80,32)
15| 5 | 122221;221211 | 10s | 10s—5 |4 or 2|3 | (1,20,132,90,0,0)
16 | 5 | 121221;222211 | 165 | 1655 [3or 2| 2| (1,32,210,0,0,0)
17 | 5 | 222201; 121201 | 20s | 20s—5 |4 or 2|2 | (1,40,202,0,0,0)
18 | 5 | o) iio1om001; | 265 | 265 =5 [30r2| 3] (1,52,184,6,0,0)
19| 5 fgggifﬂ;gi 105 | 405 -5 [3or2| 2| (1,80,162,0,0,0)
20| 5 fgfggif;ggﬂ 52s | 5255 [3or 2|2 (1,104,138,0,0,0)

120111; 102021;
21| 5 | poio1 212011, | 805 | 8055 [30r2| 2| (1,160,82,0,0,0)
210221; 202001

52| 5 | 111101;212101 |104s | 1045 =53 or 2| 2| (1,208, 34,0,0,0)
53 | 5 | 121021;222011 1045|1045 =53 or 2| 2| (1,208, 34,0,0,0)
24| 5 | 102001, 201001 | 104s | 1045 — 5|3 or 2| 2 | (1,208, 34,0,0,0)
26 | 5 | 121211, 211111 | 1045|1045 — 5|3 or 2| 2| (1,208, 34,0,0,0)

3.3. SPECTRUM CODES GENERATED BY POLYNOMIALS WITH MULTIPLE ROOTS
If 29" —1 = (2™ — 1)7 over the field F, and g(z) has multiple roots then

g{z)|(z™ — 1) where g|n. Very few is known about such a codes so in the following
table may contain equivalent codes.
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TABLE 3. Coset leaders weight distributions of ternary cyclic codes
with multiple roots and generator polynomial of degree <5

N | deg | polynomial | n k d R Spectrum

1] 2 111 35 | 35—2 |3or2| 2 (1,6,2)

2 2 121 6s | 65— 2 2 2 (1,6,2)

3 3 2001 3s | 3s—3 2 3 (1,6,12,8)

4] 3 1001 6s | 6s—3| 2 |3 (1,6,12,8)

51 3 2211 6s | 6s—3 |dor2]| 2 (1,12, 14,0)

6 3 1221 6s | 6s—3 | 3or2| 2 (1,12,14,0)

7 4 10101 6s | 6s—4 {3o0r2| 4 (1,12,40,24,2)

8 4 22011 6s | 6s—4 |4o0r2| 3 (1,12,44,24,0)

9| 4 21021 | 6s | 6s—4 |4or2] 3| (1,12,44,24,0)

10| 4 12021 9s | 9s—4 | 3or2| 3 (1,18,38,24,0)

11| 4 10201 125 | 125 — 4 2 4 (1,12,40,24,4)

12| 4 11211 12s | 12s—4 [3or2{ 2 (1,24,56,0,0)

13| 4 12221 | 12s|12s—4|30r2] 2| (1,24,56,0,0)

14| 4 11011 185 | 18s—4 2 3 (1,18,38,24,0)

15| 4 20121 24s | 24s—4 | 3or2| 2 (1,48,32,0,0)

16| 4 22201 24s | 24ds—4 (3or 2| 2 (1,48,32,0,0)

17| 4 11221 | 24s|24s—4| 2 |2| (1,24,56,0,0)

18| 5 212121 6s | 6s—5 | 60r2 | 4 | (1,12,60,140,30,0)

19| 5 111111 6s | 6s—5 | 6o0r2| 4 |(1,12,60,140,30,0)

20| S 222111 9s | 9s—5 | 3or2 | 4 |(1,18,114,108,2,0)

21| 5 120021 | 12s{12s—5|3o0r2| 4 | (1,24,74,96,48,0)

22| 5 220011 12s { 12s—5|3or2 | 4 | (1,24,74,96,48,0)

23| 5 | 112211 |12s|12s—5{30r2| 4 | (1,24,134,72,12,0)

241 5 211221 125 { 12s—5({3or2 | 4 | (1,24,134,72,12,0)

25| 5 101101 12s | 12s—5|4o0r2 | 3 | (1,24,146,72,0,0)

26| S 202101 125 | 12s—-5|4o0r2 | 3 | (1,24,146,72,0,0)

27| 5 121121 18s | 185 —5 2 4 | (1,18,114,108,2,0)

281 5 102201 185 | 18s—5{3o0r2 | 3 | (1,36,134,72,0,0)

20| 5 201201 18s | 18s—5|3or2{ 3 | (1,36,134,72,0,0)

301 5 122211 245 1 24s—5|3o0r2 | 3 | (1,48,122,72,0,0)

31| 5 211211 24s | 24s—-5|3o0r2 | 3 | (1,48,122,72,0,0)

32| 5 221001 24s | 24s—-5|3o0r2 | 3 | (1,48,182,12,0,0)

33| 5 100221 24s | 24s—5|3o0r2| 3 | (1,48,182,12,0,0)

34| 5 | 202011 |24s|24s-5|3o0r2| 2| (1,48,194,0,0,0)

35| 5 120101 | 24s|24s—5|3o0r2| 2| (1,48,194,0,0,0)

36| 5 211011 39s {39s—5|3o0r2| 3 (1,78,158,6,0,0)

371 5 201021 30s|39s—5|3o0r2| 3| (1,78,158,6,0,0)
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N | deg | polynomial | n k d R Spectrum

38| 5 112021 78s | 7185 -5 2 3 |(1,78,158,6,0,0)
39( 5 | 110201 |[78s|78s-5| 2 |3 |(1,78,158,6,0,0)
40| 5 200021 78s | 78 —~5|3o0r2| 2 | (1,156,86,0,0,0)
41| 5 | 222101 |78s|78s—5|30r2]| 2 |(1,156,86,0,0,0)
42| 5 | 100011 |78s|78s—5]|30r2| 2 |(1,156,86,0,0,0)
43| 5 101121 78s | 78 —-5|30r2| 2 | (1,156,86,0,0,0)
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