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Using the algebraic structure of cyclic codes an efficient method for the determination
of the weight distribution of the cosets of cyclic codes is presented. As an illustration
of the method weight distributions of the coset leaders of all ternary cyclic codes of
lengths up to 14 are calculated.
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1. INTRODUCTION

Cyclic codes form an important subclass of linear codes. These codes are
attractive by two reasons: first, encoding and syndrome computation can be imple-
mented easily by employing shift registers with feedback connections and second,
because they have well known algebraic structure, it is possible to find various meth-
ods for decoding them. To be able to evaluate the performance of a cyclic code for
some application we have to know the exact values of all its basic characteristics
among them covering radius, coset leaders and coset weight distributions.

Using an exhaustive search covering radii of some binary and ternary cyclic
codes are determined in [1], [2], [3], [4], [5], [6], [7]. In this work we suggest a
method for efficient calculation of the complete coset weight distributions of cyclic
codes.
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2. COSETS OF CYCLIC CODES

Let C be a cyclic [n, k| code over the finite field of g elements F, = GF(g) and
let the generator polynomial of C be g(z) with the degree deg(g(z)) =n—k. By V
we will denote the n-dimensional vector space over F,. Thenthe mapo : V — V
will be the cyclic shift of the words of V

o(ag,a1,az,...,an-1) = (@n-1,00,a1,--.,8n-2).

Theorem 2.1. Let C be a cyclic [n,k| code with the generator polynomz’al
9(z) = 2" *+gn_k_12" " * 14, +g9124+g0 and leta = (ap,ay,...,8n—k-1,0,...,0)
be a vector from the space V. Then the following two cosets coincide:

o(a)+C=r+C,
where r = (Oy ap,a1y.-.,0p—f— ‘2a 0) — Qn-— k—l(gOa q,- n—-k-1, 01 ‘e ,0)

Proof. Let us consider the standard correspondence between a vector from V
and a polynomial from the ring of the polynomials F,[z]

v =(V0,V1,...,Vn-1) = 0(T) =vo+ N T+ ...+ Vp_12" L.

If C is a cyclic code with the generator polynomial g(z) of degree m = n — k, then

it is well known that
b€a+C & g(z)|(b(z) — a(z)).

Let a = (ag,a3,...,8n—k-1,0,...,0) be a vector of V. Then
b=o(a) =(0,a0,a1,...,80-k-1,0,...,0)

and its corresponding polynomial is

b(z) = o(a)(z) = za(z) = apz + @122 + ... + ap_g_12"°F.

The remainder of the division of b(z) by g(z) = 2" ¥ +gn_r—12" % 1+.. 4+ g12+g0
is
r(z) = b(z) — an—k-19(z) =
= a2+ a1+ ... + @ k22" — Gy k1 (Gnok—12" T L b g 90)

and its corresponding vector is

r=(O’a()iala'"aan—k—2107---10)—a‘n—k—l(go';gl,' y9n—k— 13 O) O

From the well known fact that if two vectors a and b belong to one and the same
coset of the code C then their corresponding polynomials have the same remainders
by division by g(z) we can conclude that we will get one representative from each
coset if we take all vectors of the type

a= (a01a11"°$an—k—110)°--70)-
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Let the parity check matrix of the code C be in the form H = [I,_x|B]. If
a = (ag,a1,...,an-k-1,0,...,0) is a vector from V then its syndrome is s(a) =
Ha' = (ag,a1,...,an-k-1)". According to Theorem 2.1 we have o(a) +C =7r+C
and therefore

s(o(a)) = (0,a0,a1,...,8n—k-2) — Gn—k-1(90,91, - - -, Gn—k—1)-

Therefore from the syndrome of a word of V' we are able to compute the syndromes
of all its cyclic shifts.

3. ACTING OF THE CYCLIC GROUP ON THE COSETS OF A CYCLIC
CODE

Let G =< o > be a cyclic group generated by o. The group has n elements.
Lemma 3.1. Let C be a cyclic [n,k] code and a € V. Let B = {o(2)|z €
a+ C}. Then B is a coset for the code C and B = o(a) + C.

Proof. o(a+¢1) —a(a + ¢2) = o(a) + o(c1) — o(a) — o(c2) = o(c1 —¢2) =
=o(c3) €C. 0O

It follows from this lemma that we can consider the action of G over the set
of all cosets of the code C' in the following way o(a + C) = o(a) + C. By this
action the set of all cosets is partitioned to non intersecting orbits O(a + C) =
{o*(a) + C|t = 0,...n — 1} and the length of each orbit (i.e. the number of the
different cosets) is a divisor of n. All cosets belonging to one and the same orbit
have one and the same weight distribution. We can obtain one representative from

each coset of one orbit by taking the vectors a = (ap,a1,...,an- k 1,0,...,0);
¢(a) = (0,a0,a1,-..,an-k-2,0,...,0) — ay-k-1(90,91,-- -, 9n-k-1,0 0) and
#*(a),...,¢" a). If the last k coordmates of the vectors a and b are zeroes

then they belong to the cosets from one and the same orbit iff there exists s such
that b = ¢°(a).

4. COSET LEADERS WEIGHT DISTRIBUTIONS OF TERNARY CYCLIC
CODES WITH N <14

Using the results from the previous sections we have calculated the coset leaders
weight distributions of some ternary cyclic codes of small lengths. For the calcula-
tions we have used the definition of the covering radius of a code as the weight of the
coset leader of greatest weight. For a code in a standard form a vector of each coset
can be found by generating all the vectors of the form (a,0,...,0), a € GF(3"%).

k
Then the number of steps required to find R(C) by an exhaustive search is pro-
portional to n3™. If we check only one coset from each orbit we can considerably
reduce the required time. More precisely, if we have s different orbits the number
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of steps will be n3**+% and this number is less then n3™ because s < n — k. .The

time complexity can be additionally decreased if we take into the consideration the
d—1

fact that all vectors of weight less than or equal to t = are unique coset

leaders. So, we have to check only vectors of greater than ¢ weights.

The classification from [6] was used as source for all ternary cyclic codes of
lengths up to 14. The results (a list of the nonequivalent ternary cyclic codes of
length up to 14, the roots of the generator polynomials and the coset leaders weight
distributions) are presented in the Table below.

Table 1. Coset leaders weight distributions of ternary cyclic codes of length < 14

No|n [k |d | Roots | Coset leaders weight distribution

1. 4 3 2 2 ] = 2

2. 4 |12 ]2 1 ay =4,a9 =4

3. {14 |14 10,1 a; =8,a3 =18

4. 8 712 4 Q) = 2

5. 8 6 2 1 ) = 8

6. |8 [6]2 |2 a; =4,a2 =4

7. 18 |5{3 |01 a; = 16,00 =10

8. |8 {62 |02 a) = 8,a2 =18

9. 8 414 1,2 Q) = 16,02 =60,a3 =4

10. | 8 4|2 1,5 a; =8,a2 = 24,3 = 32,04 = 16

11. |8 [3}5 |[0,1,2 a; = 16,09 = 112,03 = 108,04 = 6

12. | 8 |3.]4 |0,1,5 a; = 16,y = 82,3 = 96, g = 48

13.18 [ 26 101,24 oy =16,a; =112,a3 = 368,a4 = 216,a5 = 16

14. |8 |2 |4 |0,14,5| a3 =16,09 =100,a3 = 288, g4 = 324

15. 18 [1{8 |01,25 | a1 =16,ap =112,a; = 448, a4 = 1050, a5 = 560

16. 1101912 (5 ay =2

17. (10 {8 [ 2 | 0,5 ay =4, =4

18. |10 |6 (2 |1 a1 = 10,9 = 40,3 = 30

19. {1015} 4 |01 a; = 20,00 =132, a3 = 90

20. 110 (512 |02 a1 = 10,09 = 40, a3 = 80,04 = 80, a5 = 32

21.{10(4 |4 |0,1,5 a; = 20,as = 132, a3z = 240, aq = 240,
Qg = 96

22. 1102195 | 1,2 a; = 20,09 = 180, ag = 860, oy = 2200, a5 = 2400,
ag = 900

23.11011110{0,1,2 | a; =20,y =180,a3 =960, = 3360, a5 = 7812,
Qg = 7350

24. 11 (6|5 1 Q] = 22,&2 = 220

25. 111156 |0, ay = 22,0 = 220, a3 = 440,04 = 44, 5 = 2

26. | 11 |1 [ 11} 1,2 a1 = 22, a9 = 220, a3 = 1320, ag = 5280,
as = 14784, ag = 25872, a7 = 11550
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No|n |k [d | Roots | Coset leaders weight distribution

27. 11311013 |1 a; =26

28.11319 |3 |0, ay = 26,y = 52,03 = 2

2. 1137 |5 |14 o = 41, 09 = 362, a3 = 324

30. (13 |7 |4 1172 a; =41,as = 302, a3 = 384

31. |13 | 6 6 |0,14 a1 =29, a0 =348, a3 = 1274, a4 = 32,5 = 3

32. 11316 |6 | 0,12 a1 = 29, a9 = 352, a3 = 1432, ay = 373

33.113 | 4 7 1124 a; = 26,as = 312, a3 = 2288, ay = 8788,
as = 8060, ag = 208

34. |13 (3 |9 [0,1,24 | a1 =26, = 312, a3 = 2288, oy = 11440,
as = 30342, ag = 14352, a7 = 288

35. 11311 1311247 | a1 = 26,0 = 312, a3 = 2288, oy = 11440,
as = 41184, ag = 109824, a7 = 204204,
ag = 162162

36. 14113 |2 |7 ay =2

37. 1141122 | 0,7 ay =4,ap =4

38. 114 | 8 2 1 a1 = 14,y = 84, a3 = 280, a4 = 350

39. 11417 |4 |0, a1 = 30,ae = 300, a3 = 1015, a4 = 841

40. | 14 | 7 2 0,2 a; = 14, a9 = 84, a3 = 280, ay = 560,
as = 672, a6 = 448, a7 = 128

41. {1416 |4 |0,1,7 a; =44, as = 343, a3 = 1102, ay = 1930,
as = 1935, ag = 1003, ay = 202

42. |14 |2 |7 |12 a; = 28, ag = 364, a3 = 2912, oy = 15596,
as = 56840, ag = 137200, a7 = 196000,
ag = 122500

43. 114 |1 {14 0,1,2 ay = 28, a9 = 364, a3 = 2912, ay = 16016,
as = 64064, ag = 192192, a7 = 435864,
ag = 630630, ag = 252252
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