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INTRODUCTION

Operative spaces are a special class of partially ordered algebras developed
in {2] for the purposes of the axiomatization of recursion theory. Recently, they
were shown ([8]) to give rise to a large class of combinatory algebras. There is,
on the other hand, an alternative to combinatory algebras - a kind of algebras
called ’type-free models of the linear logic’ below, since they can be regarded as
.models of a type-free version of the proof calculus for a Hilbert-styled system of a
suitable fragment of linear logic. The last algebras have a natural connection with
recursion theory and some other advantages which make reasonable the question
whether we can model them in a way similar to that in which combinatory algebras
were modeled in [8]. In the present paper we discuss this question and indicate a
large class of operative spaces (including the iterative ones in the sense of [2]) and
combinatory spaces in the sense of [4] in which the type-free models of the linear
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logic can be modeled. Some of these results were briefly mentioned in the last
section of [8]; in the present paper we give them a detailed exposition. As in the
paper (8], the last results will follow from a suitable normal form theorem for some
kind of expressible mappings in operative spaces with iteration. The normal form
theorem of the present paper can be regarded as a refinement of a normal form
theorem of Georgieva [1].

The type-free models of the implicative linear logic and other partially ordered
algebras based on linear (otherwise called BCI-) application were studied previously
by the present author ([5, 6, 7]) for the same purposes of axiomatization of recursion
theory; but until recently no natural connection was known with other systems of
the algebraic recursion theory like operative spaces or combinatory spaces. The
normal form theorem of the present paper changes this situation since it enables °
one to define a natural affine (or otherwise BCK-) application in every operative
space with iteration. This opportunity is used in Section 3 below, where we show
how to model one of the most important application-based systems of the algebraic
recursion theory in such spaces, indicating in this way that the last system comprises
the majority of the kinds of recursivenesses dealt with in the 'theory of operative
spaces. \‘1.

1. BASIC DEFINITIONS

An operative space, according to [2], up to some notational modifications, is a
partially ordered algebra F with two binary operations \ca:lled multiplication and
pairing and three constants I,T',F, considered as 0-ary operations, which satisfy the
conditions (OS1) and (OS2) below. (Note that the dpndition that F is a partially
ordered algebra includes the requirement that all operations of F are increasing
on each argument.) We use the following notations for thp operations in question:
the multiplication is denoted by juxtaposition and the result of applying pairing
to the arguments @, € F will be denoted by [p,%]. The conditions defining an -
. operative space F are the following ones:

| (OS1) F is a monoid with unit I with respect to the multiplication;

(OS2) the identities xle ¥l = xe,x¥] , (o, 9T = o, and [p,¢]F = ¢ are
satisfied for all elements @, 9, x of F. :

‘The operations of multiplication and pairing and the constants I,T,F are called
basic operations of operative spaces or, more briefly, basic OS-operations. We shall
denote by m™ the standard representation F™T = F...FT of a natural number m
in arbitrary operative space F. We employ also the shorthand notation

[‘PO) P13 4y ‘Pm-l] = {‘PO: [ﬁPl, '-'[‘pm—% ‘pm—llf"]];

so we have the identities
[po, 1,y omlit = @i
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fort<m-—1and
[¢0v P10y ‘pm]Fm = ©Pm

in every operative space.
For a unary operation I : 7 — F in an operative space F we shall say that
it is an iteration iff it satisfies the inequality

[LI(@)e < Xop)

for all ¢ € F, and for all a, £ € F the inequality [o, €] < € implies al(p) < &.
Therefore the iteration I in F, if it exists, is uniquely determined by the fact that
for every ¢ € F the element I(p) is bound to be the least solution of the inequality
[I,€]e < & with respect to &; in particular, it satisfies the corresponding equality.

1 X@)e = I(yp).

When the iteration I exists in the space F, we shall say that F is an operative
space with iteration; this notion is equivalent to the notion of G-space in [4] and
to that of an operative space satisfying the axiom (££) of Ivanov [2]. Hence every
iterative operative space in the sense of [2] is an operative space with iteration, but
the reverse is not necessarily true. Every operative space F in which the least upper
bound supB exists for every well ordered part B C F and commutes with the left
multiplication: psupB = sup{yz | z € B}, is iterative and therefore has iteration.
Another important and most commonly apearing class of iterative operative spaces
is that of continuous ones, i.e. those in which the least upper bounds of countable
increasing sequences exist and commute with all basic OS-operations.

In every operative space F with iteration the element O = I(F) is the least
element of F, and it satisfies also the equality aO = O for all @« € F. This follows
from the equality [a,&]|F = £ by the definition of iteration. The last definition
implies also that the iteration is an increasing operation.

Let F be arbitrary operative space and B C F. We shall say for a mapping-
f : F* — F that it is OS-expressible in B iff f can be defined by an explicit
expression constructed by means of the basic operations of operative spaces and
the elements of B as constants. Similarly, when the space F has an iteration,
the mapping f will be called OSI-expressible in B iff it can be defined by similar
expression, which may contain also the operation of iteration I. Instead of OS-
or OSI-expressible in B mappings of zero arguments we shall speak also of OS- or
- OSI-expressible in B elements of F, respectively. We shall also drop ’in B’ when
‘B is clear from the context or arbitrary.

2.  NORMAL FORM OF SINGULAR MAPPINGS

An OSI-expressible (in B) mapping f : F* — F in an operative space F
with iteration will be called (B-)singular iff in the expression defining f all the
variables for the arguments of f occur exactly once. More precisely, the B-singular
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mappings of n arguments are those which belong to the least class O of operations
in F satisfying the following conditions:

0) @ contains the identity operation in F of one argument;

1) O contains the basic constants I, T, F and the elements of B, considered

as operations of zero arguments;
: 2) for all two operations f and g in O of n and m arguments, respectively, the
operation h of n + m arguments defined by

h(§0: ---,fn—l, 703+ nﬂl-l) = f(&Oo eeey {n-—l)g(mr eeey nnl--l)

is also in O;
3) for all two operations f and g in O of n and m arguments r&spectwely, the
operation h of n + m arguments defined by

h(&os .- 61;.51,170, ooy TIm~1) = [f(fOs s €n=1)s 9(M05 - nm—l)]

is also in O;
 4) for all operations f in O of n arguments the operation A of n arguments
defined by

.

hY

h(fo, “eny n-l) ol I(f(fo’ seey n-—l)) hY
is 8180 mn 0 '
5) for all operations f in O of n arguments and every bqectxon

p:{0,.,n~1} = {0,..,n—1}

the operation f, of n arguments defined by

fol€os s €n-1) = f(En(o), -~°:€;}n—l)))

\,
isalsoin O. '
The main purpose of the present section is to prove the following normal form

theorem for singular mappings.

Theorem 1. For every B-singular mapping f.F" —-* F in an operative space
F with iteration there is an element ¢ € F, OS-expressible in BU {O}, such that

F(6or s Ent) = KT, 2% €0, ..., (0 + 1) ens]o)T

for alléo,...,En-1 € F.

For that purpose we shall employ the technique of homogeneous systems in-
troduced by Skordev [3], [4]. Let 7 be an arbitrary operative space. Following
Skordev, we shall call a mapping f : F* — F left homogeneous iff it satisfies the

equality
f(‘P"o, ) W’n-l) = ‘Pf(“,Ov seey ﬂn-l)

\
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for all ¢,9,...,9,-1 € F . Left homogeneous mappings f are easily seen to be
increasing on each argument since they satisfy the equalities

f(ﬂo,...,‘!’,,_}) == f([t’o,...,l?,,_1]0+,...,[190, ey On—1])F™)
= [do, ...,19n_1]f(0+,...,F"—1).

By a homogeneous system we shall mean a system of inequalities of the form
Qi(av L0y oeevy mﬂ—l) < z; (21)

where i ranges over natural numbers less than n, ®; : .7-"‘.;’" —~ F are left homo-
geneous mappings of n + 1 arguments, a € F is a parameter, and Zo, ..., Zn—1 are
unknowns. The following fundamental result for such systems, up to nonessential
modifications, belongs to Skordev [3], [4].

Theorem 2. Suppose the 'space F has an iteration. Then the elements y;
defined by pu; = al(p)it , wherei = 0,...,n—1,
Y = {‘PD_"-W‘P'I‘&—I’O‘:

and ¢; = ®;(T,1%,...,n*), form the least solution of the system 2.1 in F with
respect to zg,...,Tn-1, respectively, for alla € F. '
Proof. (o, .-y in—1) is & solution of (2.1) since .
<pi(a’ o, "":ﬂn—l) = Qi(c" aI(‘p)0+v mﬂ“l(‘P)(" - 1)+)
= a®i(1,X(p)0",. ..., X(p)(n - 1)7)
all, ()] 2:(T, 1+"'"’n+) = ofI,I(p)]p:
ol LI()lpit = al(p)it = w;;

and for an arbitrary solution (&,...,€n-1) of (2.1) with respect to zg,...,Zn—1,
respectively, define & = [£,...,€n~1,0) ; then for arbitrary « € F we have

[a’a‘P = {a'en‘PO:-"a‘Pn—l'O} = Ha’ﬂ‘f’o’"'aia’gl‘/’n—lvo]

([, €]®o(T, 17, ...,n%), ..., [, E]@n-1 (T, 1, ..., n"), O]
[®0(a, €07, ..., E(n — 1)), ..., i1 (e, £0F, ..., E(n — 1)7), 0]
[@o(a, €0, -1 En=1)) -y Pr-1(, €0, -y €n—1), O]

< [foy-rén-1,0] = &,

whence by the definition of iteration al{y) < ¢ and

pi = ol(p)it < &t = ¢

it

foralli < n-10

Note that the last theorem implies that the least solutions of homogeneous
systems in operative spaces with iteration are left homogeneous in the following
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sense: If (po, ..., tn—1) is the least solution of a homogeneous system of the form
(2.1), then (Buo, ---y Bun—1) is the least solution of the system

‘pi(ﬁaa ZQyeeens zn—l) < z;

for all g € F. ‘

Henceforth in this section we shall suppose that F is an operative space with
iteration.

Next we shall specify some kind of homogeneous systems, which we shall call
canonical. Namely, let £ = (£o,...,€n=1) € F™ and B C F; then by a (B;¢)-
canonical system of inequalities we shall mean a homogeneous system of the form

Pi(I) Zo, x1€01 eery xnfnwhzn-{»la seey xn—}-m) < T, (2.2)

where i < n+m, o, ...,Tn4m are unknowns and Lo,...,.[pym : FPH7H2 o F

are OS-expressible in B left homogeneous mappings of n 4+ m + 2 arguments. A
mapping f : F* — F will be called canonically definable in B iff there is a (B; §)-
canonical system of the form (2.2) such that the first member (corresponding to
zo) of the least solution of (2.2) equals f(§) for all £ € F™. The sys of the
form (2.2) being homogeneous, the Theorem 2 applies to them, whence we obtain
the following . \ '

Corollary 1. Evef'y (B; €)—canonical system (2.2) has a least solution whose
components u; (¢ <n—1) have the form

i = ML, 2* 0, (4 1)
for a suitable element v € F which is OS-ezfmsibi;?‘in B.U {0}.
Proof. By Theorem 2 the least solution of (2:2) is gii?pn by
we = X(p)i*, =~
wherei < n+m, ¢ = [go,..., Pn+m, 0], and
wi = Ti(T,1%,2%¢,..,(n+ 1) enor, (n + 2)F, .., (n+ m+ D).

Thence
Yi = l192+§0’ ey (n + 1)+§n-1]7i)

where
v = 0iT% 11,1, . (n = ), F*, T(n+ 2), ... T(n+ m + 1)™).
Then defining v = [y0, ..., Yn+m, O}, we obtain

o = [I,2%¢, ...,(n + D) ]y

and the required representation of ;. O
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Corollary 2. Every canonically definable in B C F mapping f : F© — -7" of
n ar_quments is representable of the form

f(&O’ veey n—l) e I([Ia 2+£0r weey (n + 1)+£n—1]'7)T

for a certain elementy € F which is OS-expressible in BU {0}.0

The last corollary shows that to establish Theorem 1 it is enough to prove that
all singular mappings are canonically definable. For that purpose it will be conve-
nient to introduce some more terminology about homogeneous systems. Consider
two homogeneous systems

Qt'(stOs-"-1:1:71'“1) <z (2'3)

and ‘
U5(1, Yo, s Ym-1) < W) (2.4)

where ¢ < n—1 and j € m — 1 and the variables z;,y; are supposed pairwise
different. Then the product of the systems (2.3) and (2.4) is defined as the homo-
geneous system of n + m inequalities, consisting of the inequalities of (2.3) and the
m inequalities

| U;5(Z0, Y0, -+ Ym~1) < Y5 (2.5)
Similarly, the homogeneous system of n + m + 1 inequalities, consisting of the
inequalities of (2.3) and (2.4) and the inequality [zo,y0] < z , where 2z is a new
variable, will be called pairing of the systems (2.3) and (2.4); and the homogeneous
system of n inequalities |

<I>,-([I,xo],a:o,....,a:,,_1) S T (2.6)

will be called éteration of the system (2.3).

Lemma 1. Suppose (uo, ..., in-1) and (vp,...,Um—1) are the least solutions
in F of the systems (2.3) and (2.4) wzth respect t0 Tg,...,Tpn—1 GNA YOy ey Ym—1,
respectively. Then:

(8) the (n+m)-tuple (o, ..., hn—1, H0V0, ---, HoVm~1) &S the least solution in F of
the product of the systems (2.3) and (2.4) with respect to Zg,...,Tn—1,Y0, s Ym—1,
respectively;

(b) the (n+m+1)-tuple (1o, .-, bn—1, Y05 -y Vm~1, [0, Vo]) i3 the least solution
“in F  of the pairing of the systems (2.3) and (2.4) with respect to zo,...,Tn-1,
Y0, -+ Ym—1, Z, respectively; and .

( c) the n-tuple (X(uo), [1, X(uo)li1, ---, (I, X(0)} in—1) is the least solution in F
of the iteration of the system (2.3) with respect to zo,...,ZTn-1, respectively.

Proof. The n-tuple (uo, ..., in—1) satisfies the inequalities of (2.3), and by the
left homogeneity of ¥; the (m + 1)-tuple

(p’oa “OVb: erey “OVm-—l)
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satisfies those of (2.5). Hence the (n + m)-tuple

(H0y -y =1, HOV0) -++y HOVim—1)

is a solution of the product of the systems (2.3) and (2.4). Consider an arbitrary
solution (&, ..., €n—1, Mo, ---» fm—1) Of the last product with respect to zp, ..., Zn-1,

40, ---s Ym—1, respectively. Since (to, ..., hn—1) is the least solution of (2.3), we have

i < & for all natural numbers 7 less than n. On the other hand, by Theorem 2 it

follows that (uovy, ..:, boVm-1) is the least solution of the system

‘I’j(m, in ssdey ym-—l) S 'y“J

with respect to yo, ..., Ym-1, respectively; and from the inequality po < & we
can conclude that (7o, ...,m-1) satisfies the last system. Therefore pov; < n;
for all j < m — 1, which proves (a). The proof of (b) is similar, but simpler
and straightforward, and we leave it to the reader. Finally, to prove (c), denote
shortly by X the iteration I(uo); then using the equality [I, AJuo = A and the left
homogeneity of ®;, we see that the n-tuple (A 1, A, oy [1, Al tB—1) is a solution
of (2.6): .

, R
Qi([IyA]’)‘, [I)’\]I-"lv"’{I)A]ﬂn-—l) = [IaA]Qi(I:I-‘O"",I‘n-I) < [I’Ml-‘i'

Let (o, ...,€n~1) be an arbitrary solution of (2.6) with respdct to Zo, ..., Tn—1, Te-
spectively. Then it is a solution of the system. \

oi_([Is 50]’ ZQy +eee xn-l) <z
with respect to zo, ..., Tn-1, respectively. But Theorem 2 implies that the n-tuple

(L, £oltor oo [T, Eoltint} N

is the least solution of the last system. Therefore [I, o] < & for all i <n-—1,
whence [I,&po < & and A = I(uo) < &o, and finally [I,A\Ju; < & . -

Proof of Theorem 1. According to Corollary 2 it suffices to show that all B-
singular operations in F of n arguments are canonically definable in B; and this
follows from the fact that the class O of all canonically definable in B operations
in F satisfies the conditions 0) - 5) in the definition of B-singular mapping above.
Indeed, the identity mapping of one argument e(§) = £ is canonically definable by
the system of two inequalities £:£ < zo and I < z,. If b is a basic constant or
element of B, then b as an operation in F of zero arguments is canonically definable
by the system of one inequality Ib < zp . Thus O satisfies conditions 0) and 1).
To see that it satisfies conditions 2) - 4), it is enough to note, respectively, that
the product, the pairing and the iteration of canonical systems are also canonical
systems, and to apply Lemma 1. Finally, the class O satisfies §), because a canonical
definition by a system of the form (2.2) of an operation f in F of n arguments can be
regarded as a canonical definition of the operation f, after a suitable permutation
of the variables z3,...,2, . O

v *
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3. AFFINE APPLICATIONS IN OPERATIVE SPACES

The normal form Theorem 1 proved in the previous section enables us to define
in arbitrary operative space F with iteration a binary operation which has the
properties of affine application. Namely, for all ¢, ¥ € F define

(o) = 1(I1, 2+¢']‘P)T | (3.1)

We shall adopt the shorthand notation (¢g- @1 ... @n—1-n) for the iterated appli-
cation ((...(¢0 1) * ...~ ¥n—1) - ¥n) and we shall also omit the external parentheses
in such expressions. In the case n = 0 the last notation should be interpreted as
0. We have the following

Corollary 3. Let F be an operative space with iteration and let f be a B-
singular operation in F of n arguments. Then there is an element ¢ € F, O5-
expressible in B U {O}, which represents f in the sense that for all &,...,6n—1 € F

we have | |
f(&)’ amay fn-—l) = - - ...-&n-1.

Proof. Induction on n. The case n = 0 is trivial; suppose n > 1 and assume
the induction hypothesis for n — 1. By Theorem 1 we have an element o9 € F
OSexprwsible in BU {O} such that for all {o,...,{n—1 € F
f(§orr8n—1) = K({L,27 41,360, s (n + 1) Ténalpo) T
Thence for the B-singular mapping f; : F*~! — F defined by
| fl(ny veny fﬁ—?) = [T3 RT3+§0’ "'1T(n + 1)+€n—2]‘P0

we have

£ (§o, wernet) = (I, 2¥€n—1]f1(.£q, wr€n=2))T = f1(€os-1€n-2) - €n-1,

and by the induction hypothesis applied to f; we obtain the required representation
of fO :

Corollary 4. In an arbitrary opemtwe space F with iteration, the binary
operation defined by (3.1) is an affine application in F in the sense that there are
three elements A, C, K € F, OS-eapms:ble in {O},such that for all p,,x € F
we have

-

A-p-Yp-x = ¢-(¥-x) (3.2)
C-o-p = 9o (3.3)
Ko = o (34)

Moreover, there are two elementsC,, D € F, ‘O8S-expressible in {0}, which satisfy
forallp, ¥, x € F the equalities

Co-0:(De¥-x)=0-9¥-X (3.5)
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™

D, ¥-x = [Ty, Fx). (3.6)

Proof. The existence of A, C and D, satisfying (3.2), (3.3) and (3.6), respec-
tively, follows immediately from Corollary 3 since the right-hand sides of the last
three equalities are the values of suitable @-singular mappings. The same holds
also for K and (3.4), since we can replace ¢ with [, ¥]T. The right-hand side of
(3.5) is also the value of a singular mapping for the arguments ¢, ¥, x, whence by
Theorem 1 we have

pY-x = I([I, 2+, 3%, 4% x]|Co)T = I([I,2% ¢, [3%,47](Ty, Fx||Co)T

for a certain OS—expressxble in {O} element Cp € F, and we can define C, by the
help of Corollary 3 as an element of F satisfying

Cu-p-9 = K([I,2%p, [3*,4*]9]Co)T

foralle, 4 € F.0

The partially ordered algebras having one binary operation called apglication,
five constants A,C,K,C, and D,, satisfying (3.2)-(3.5), and a least element O for
which D, - O - O = O were studied before by the present adthor uhder the name
of CLCA (cartesian linear combinatory algebras; [6], (7]). However, a more appro-
priate (for the traditions of algebraic recursion theory) terminology would be, for
instance, 'applicative spaces’ instead of CLCA, and we shall follow this terminology
below. The applicative spaces were shown to provide a simple abstract algebraic
treatment of graph models of lambda calculus, whiclx:;n comp(ise all the basic re-
cursive algebra of sets of natural numbers under appropriate conditions (consisting
in a suitable strengthening of the supposition of existenog of least solutions of all
inequalities of the form ¢ - £ < ¢ with respect to £) and which have a good variety
of models inspired besides the graph models also by continuous functionals; Scott
domains and others. Now the last corollary shows that applicative spaces admit
a still greater variety of models, every operative space with iteration in which the
equality [0, 0] = O holds providing such a model. :

. Properly speaking, we obtained a functor & : OSI — AS from the category
OSI of operative spaces with iteration satisfying the last equality to the category
AS of applicative spaces (morphisms of OSI are the mappings preserving the ba-
sic OS-operations and the iteration, and the morphisms of AS are the mappings
preserving the application and the basic constants A,C,K,C.,D, and O), which
sends every object F of OSI to the applicative space ®(F) described by (the proof
of) Corollary 4 (in particular, ®(F) has the same set of elements and the same
partial order as F) and every OSI-morphism f : 7 — F’ to the same mapping
f. This functor @ is obviously faithful, but it is a problematical question whether
® is full, which amounts to the question whether the original basic operations of
an operative space 7 € OSI are explicitly expressible via the basic constants and
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operations of the applicative space ®(F); and the question of equivalence of the
categories OSI and AS is still more problematical.
A nice feature of the functor ® is that it preserves the storage operations in
the following sense. As it was shown in [7], the unary operation V in an applicative
" space A, which assigns to each element ¢ of A the least solution V() of the
inequality D.-p-§ < £ with respect to £, has the properties of the storage operations
arising in semantics of linear logic, namely there are elements I, ,M, ,Q.,K.,W, €
A, such that the equalities

IL.-V(p) = e (3.7)

M. -V(p)-V(¥) = Vip-¥), (3.8)
Q.-V(p) = Vi(p) = V(V(p), (3.9)

K. %-V(p) = v, (3.10)
We-9-V(p) i= ¢-0-p (3.11)

hold for all ¢, ¥ € A, provided the space A satisfies the conditions mentioned
above and specifted in [6] and [7]. The algebra of proofs for the Hilbert-type ax-
iomatization of the fragment of linear logic restricted to the linear implication and
the exponential connective 'of course’ can be regarded, by the well known formulae-
as-types correspondence, as a typed version of the algebras with two operations -
(linear) application and storage V — and seven constants 4, C, I,, M,, Q., K., W,
satisfying (3.2), (3.3) and (3.7)-(3.11). Hence we use the term type-free models of
linear logic for the last algebras. Now the natural storage operation V defined above
in the applicative space ®(F) assigned to an operative space 7 € OSI coinsides
with the natural storage operation in the last space, which is called ¢ranslation (in
[2]) and is defined as the least solution of the inequality [T'p, F¢] < € with respect
to £&. This follows immediately from the equality (3.6) of Corollary 4 and is the
reason to say that ® preserves the storage operations.

The type-free models of linear logic have various instances closely connected
with recursion theory; that is why they were introduced and used even before the
discovery of linear logic for the purposes of axiomatization of recursion (e.g. in
[5]). From purely formal point of view, they provide a substitute for the (models
of the) combinatory logic, which is easier to deal with, being based on the binary
operation of linear application. The last operation is more natural and easier to
model, and has the advantage of being free of the gross algebraic complexity of the

-basic laws for the traditional application operation of combinatory logic, replacing
them with some kind of generalized associative and commutative laws. The usual
combinatory logic can be easily modeled in the type-free linear logic. by defining
the application operation Q as follows: Q(¢,¥) = ¢ - V(¥).

Now the results of [7] imply that for every object F of OSI the applicative
space ®(F) forms a model of the type-free linear logic with respect to the storage
operation defined as the least solution of the inequality D, - ¢ - £ < £, provided
the space ®(F) satisfies the conditions specified in [7], which is always the case
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for continuous operative spaces F. However, one can naturally construct models
of the type-free linear logic in a larger class of operative spaces (not necessarily
continuous), namely the iterative ones, as well as in all combinatory spaces in
the sense of [4] satisfying some weak suppositions of iterativity, by a direct use of
translation and other suitable storage operations. This we shall discuss in the next
section. .

-

4. STRONG STORAGE OPERATIONS IN OPERATIVE SPACES

Let F be an operative space with iteration and let $ bea unary operation in F.
We shall say that $ is a strong storage operation in F iff there are three elements
D, P, @ € F such that the equalities

$(p)nt = nty, ‘ (4.1)
$(p¥) = $(p)$(v), | (4.2)
$(ov) = [Ble)$(¥ID, (4.3)
$B3(p)) = Q8(p)P, | L (a9
$(I(p)) = I(D$(y)) N (4)

hold for all p, ¥ € F and all natural numbers n. A natural example of a strong
storage operation provides the operation of translation in iterative operative spaces,
which are defined ([2]) as operative spaow with iteration sa.txsfymg the following
addxtxonal axiom . v

(£) There is a unary operation ¢ (<p) in F called translatxon, such that the
inequality [T'p, F(p)] < (¢), and the mphcat?én : \

(aF < wa&[aTcp,wl)T] < 1') = a‘(ip) <7
- hold for all , a, ¥, T € F. . | | N
" Proposition 1. In every ilerative operative space the operation rqf translation is

a strong storage operation such that the corresponding constants D,P and Q are
explicitly expressible by means of the basic operations, iteration and translation.

Proof. This is proved in [2]. Namely, the equality (4.1) for the translation
operation is Proposition 5.6 in the quoted book; the equalities (4.2), (4.3) and
(4.4) are Propositions 6.21, 6.36 and 6.40, respectively; and the equality (4.5) is
Proposition 6.37 in view of the expressions ¥(p) = [p]|F = [plp and [p] = (I,1(¢))
of the operations of iteration in the sense of the present paper and that in the sense
of [2] with each other, which is easy to. check directly and which also occurs, for
instance, in (8], pp. 1739-1740. O

Generally speaking, there are many other fixed point definable strong storage
operations in every iterative operative space, but the translation is one of the
simplest of them. .
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Another important example of strong storage operations is provided by the
notion of combinatory space of Skordev [4]. Consider a combinatory space S =
(F,I1,C,11, L, R,E, T, F); we shall use the notations and the terminology concerning
combinatory spaces from [4}, and we shall suppose that T ,F € C, which does not
make an essential difference with the original definition in [4]. We shall call the
space S weakly iterative (compare with the notion of iterative combinatory space
from [4]) iff for all ¢, x € F the least solution [p,x] € F of the inequality
(x = &p,I) < ¢ with respect to £ exists, and for all @ € F the element afp, x] is
the least solution of (x — £y, ) < € with respect to £ in F.

Proposition 2. Suppose in the combinatory space S the equality (L,R) = I
holds. Then there are elements G, Ty , Fy, D, P, Q € F elementary in @ such
that: the poset F forms an operative space S, with respect to the same unit I and
a multiplication operation as in S, the operation [—,—] defined by

9] = (L — ¢R,YR)G,

and the elements T, and F, as the basic 0S-constants T and F, respectively; and
the operation $ defined by $(¢) = (L,pR) satisfies (4.1)- (4.4) in S;. Moreover,
if the space S is weakly iterative, then the operative space S; has an iteration and
(45)a.laoholda i.e. 8tsastrongstomgeopemtwum8+

Proof. The proof makes use of the technique for combinatory spaces devel-
oped in [4] and [2]. More specifically, it is proved in (2] that the partially or-
dered monoid F is an operative space S, (called the companion operative space
of §) with respect to the pairing operation ¢,¥ + (L — ¢R,¥R) and the el-
ements T’ = (T,I) and F' = (F,I) as the basic constants T and F, respec-
txvely, and the elements C = (LR — T'$(R), F’S(R)) P = ((L,LR),RR) and

= (LL,(RL, R)) satisfy the equalities (4.2)-(4.4) in S., replacing D by C (see
Propositions 27.13, 10.12, 10.13 and 10.16 in [2]). Then define T, = PT'T,
F, = PF' and G = (LL — T'R,F'(RL,R)), and note that Proposition 27.8 in’
[2] combined with the supposition (L, R) = I implies the following fact:

(*) For all o, ¥ € F such that p(c,I) < ¥(c,I) for allc € C we have ¢ < .
Using this fact and the equalities | |
GF.(c,I) = GP(F,(c,I)) = G((F,c),I) = F'(RL,R)(F,c),]) = F'(c,I)
we obtain GFy = F', and similarly, o
GT, = GPT'T' = GP(T,(T,I)) = G(T,T),I) = T'R((T,T),I) =

Hence .‘
o, ¥1Fy = (L — ¢R,YR)GFy = (L — R, YR)F" = ¢,
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and similarly, ¢, ¥]T4 = ¢, which shows that S is an operative space, the equality
xle, %] = [xw, x¥] being obvious. Using again (*) and the equalities
$(¢)(c, 1) = (L, pR)(e,I) = (c,9) = (¢, D)y, (4.6)

which hold for all ¢ € F and ¢ € C, we can prove the equality $(p)Fy = F,$(yp)
as follows:

$(p)Fi(c,]) = $(9)PF'(c,I) = $(p)((L, LR),RR)(F, (¢, 1))
(L, pR)((F,c),I) = ((F,c),¢) = ((F,c), D)y

= Fi(c,I)p = Fy8(p)(c,I).
Similarly, $(@)PT’ = PT'$(yp), whence
$(p)T+ = S$(p)PT'T = PT'$(p)T' = PT'(L,¢R)(T,I)
= PT'(T,¢) = PT(T,)p = Tyyp.

The equalities $(p) Fy = F1$(p) and §(9)Ty = T4 imply (4.1)Hor the operative

space Sy; and (4.2) and (4.4) are the same as in the compamon space S,. The
equality (4.3) follows from the same one in S.: ¢ \\

$(ip,u]) = S(L — eRYR)S(G) = (L — S()RSWRICS(G)
= B)SGIE ~ TR FLRICKE) = 56, SWID,

whefe |
= (L = T4R,FyR)CS(G) = (LR — T+s(R),F4s(R»$(G)! '

Now suppose the combinatory space S is weakliterative. To prove that the
opexatwe space S; has iteration, it is enough to show that the companion space
S. has an iteration, as it follows easily from the deﬁmtnoﬂ of the pairing operation
in S;. We shall see that the iteration I, in S, can be defined by L(y) = R[(L —

F'R, T'R)(pR‘ LT, ie. that for all ¢, a € .7" the element al, (<p) is the least

solution of
(L = aR,R)p < & . (4.7)

with respect to £ in 7. Indeed, for all ¥ € F we have (L — [JR,L]YR,I) =
[9R, L], whence
¥R, L)T' = [9R, L]¥.

Using the last equality and writing shortly E for (L — F'R,T'R), we can check
that al.(p) satisfies (4.7) as follows:

(L' = aR,ol.(p)R)¢p = (L — aR, aR[EpR, LIT'R)y
(L — aR[E@R, LIT'R, aR)(L — F'R,T'R)p
aR(L — [EpR, LIT'R, I\Ey
aR(L — [E¢R, L)(L — F'R,T'R)pR, I)Ey
aR[EpR, LIEp = aR[EyR, LIT' = al.(p).
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Assuming that £ is an arbitrary solution of (4.7) in F, we have as well

(L = (L — £R,aR)EypR, aR)
=(L — (L — aR,£R)¢R, aR) £ (L — &R,aR),

whence by the weak iterativity of S we obtain
aR[BgR, L] < (& = €R,aR)

and '
al.(p) = R[ER,LIT' < (L — £R, aR)T’ = ¢

completing the proof that I, is an iteration in S.. Hence the operation I+ defined
by I+(p) = L.(Gy) is an iteration in S;. To establish the equality (4.5) for Sy,
we shall do this ﬁrst for S,, namely we shall show that

$(L(¢)) = L(C8(¢))

for all @ € .7" Indeed, using the equahtxes (4.3) (for S.) and $(1) = (L, R) = I,
we have , : .

(L - R, $(L.(¢))R)CS(p) = (L — $(I)R, 5(1;(<R))R)C$(¢P)'
= $(L - RL(@R)) = $L(p),
which shows that I,(C$(p)) < $(I.(¢)). To prove the reverse inequality, take an

arbitrary ¢ € C and note, by the help of the definition of the constant C a.nd the
equalities (4.6), that ..

cle]) = (LR - T'S(R), FSR)eT) = (L — T I)R, F(c,D)R).
Thgn |

(L = (¢, )R, L(CS(¢))(c; I)R)p
= (L = R L(CS()R)(L — T'(c, DR, F'(c,DR)y
(L — R, L(C$(p))R)C(c, D)y
= (L - B, L(C3(¢))R)CS(p)(c, ]) = L(CS(¥))(c, ),

whence, I, being iteration in ., we obtain

(e, DI (p) < L(C8(p))(c, I),

which by (4.6) and (*) implies $(1.{¢)) < I1.(C$(p)) and completes the proof of
the equality $(I.(¢)) = I,(C$(¢p)) The last one implies

$(L+(¢)) = $(L.(Gy)) = L(C3(Gy)) = I~(C$(G)S(<p))
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On the other hand
(L - ‘pR! '/’R) = [QO, 'p](L - T+R1 F+R)

whence
L(p) = Li((L — T4 R,FyR)y)

for all p € F, and
S(I+(<p)‘) = I, ((L = T4 R,F4R)C$(G)$(y)) = 14+(D%(y)).0

Remark. The supposition (L, R) = I in the last proposition was made for the
sake of simplicity — we could avoid it at the expense of some complications of the
exposition, especially in Section 2. On the other hand, this supposition is natural,
but no special reasons are discussed in the books [3] and [4] for its abandonment;
it seems it was abandoned just for the reason of its not being necessary for the
exposition presented in those books. The paper [9] however, combined with Propo-
sition 2 above, indicates a better exposition which can be simpli by adding the
supposition in question to the axioms. Also, the examples of combinatory spaces
occurring in the quoted books do not give reasons to consider the abanddnment of
(L, R) = I as essential for the scope of the theory: all of tkqm haye more or less
obvious variants in which the last equality is true.

Now, returning to the general case of operative spaces, we have the following

Corollary 5. Suppose F is an operative space with iteration, and $ is ¢ strong
storuge operation in F with corresponding constants D, P, Q € F satisfying (4.1)-
(4.5). Then the poset F forms a model of the type-freg linear logic with respect to the
application operation defined by (3.1), the operation $'as the s e V, and certain
constants A, C, I,, M,, Q., K. and W, which are OS-ka. in {D,P,Q,0}.

Proof. The existence of A and C satisfying (3.2) and (3.3) is established in
Corollary 4. By Corollary 3 there is Iy € F OS-expressible in {O} and such that _
@ = Ip-p for all ¢ € F, whence by (4.1)

e = 2T = (L S@2 T,
and taking I, to represent the unary singular operation fy defined by
| £o(§) = (1,2} o)T
in the sense of Corollary 3 we obtain (3.7). By (4.2),(4.5) and (4.3) we have as well
V(e - %) = $(I(1,2%yJp)T) = L(D[§(1), $(27)$(¥)} D$())$(T)),
whenoe‘ the element M, representing the Binary singular operatiozi’ f1 defined by

fi(&,n) = I(D[S(1),8$(2*)nIDES(T))
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in the sense of Corollary 3 satisfies (3.8). Similarly, the equality (4.4) shows that
the element Q. representing in the sense of Corollary 3 the unary operation f3
defined by f2(§) = QP satisfies (3.9); and to satisfy (3.10) we can obviously take
the constant K from Corollary 4 for K,. Finally, by Theorem 1 we have an element
Wo € F OS-expressible in {O} such that I([I,2%¢,3+n,4*(C|Wo)T = £ -5 ( for
all §n,( € F. Then

1/’ PP = I([I’ 2+¢’ 3+‘ps 4+‘P]W0)T = I([Ii 2+¢7 $(‘p)[3+a 4+]]W0)Ta
and taking W, to represent in the sense of Corollary 3 the binary singular operation

fa defined by
f3(£v 7)) = I([Iv 2+£: 77[3+1 4+]]W0)T
we obtain (3.11). O

.Properly speaking, the last corollary yields a faithful functor ¥ from the cat-
egory of operative spaces with iteration and strong storage operation to the cate-
gory of type-free models of linear logic; but, as with the functor ®, the questions
of whether ¥ is full and of existence of equivalence of the last two categories are
open.
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