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In the theory of cyclic codes it is a common practice to require (n,q) = 1, where u is
the word length and Fy is the alphabet. However, much of the theory also goes through
without this restriction on n and q. We observe that the cyclic shift map is a linear
operator in Fg'. Our approach is to consider cyclic codes as invariant subspaces of F'
with respect to this operator and thus obtain a description of cyclic codes in this more
general setting.
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1. INTRODUCTION

The main purpose of this paper is the study of some properties of the cyclic
codes as linear subspaces without the requirement that the field characteristic is
coprime with n. We already considered the case of coprime field characteristic and
word length in [4]. |

The linear cyclic codes are traditionally described using the methods of commu-
tative algebra (see [2] and [3]). Since the linear codes have the structure of linear
subspaces of F™, where F' is a finite field, the description of linear cyclic codes in
terms of the linear algebra is natural.
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2. SOME LINEAR ALGEBRA

Let F = GF(q) and let F™ be the n-dimensional vector space over F with the
standard basis e; = (1,0,...,0), e2 = (0,1,...,0),...,e, =(0,0,...,1).
Let ¢ : F™ — F™ be the linear map given by the formula ¢(zy,z2,...,2,) =

(xﬂn Tryeo- 3$31~1)°
Then ¢ has the following matrix

000...1
100...0
A=1{010...0
000...0 .
in the basis e;,es,...,e,. Note that p(e1) = ez, w(e2) = e3,..., Ylen—1) = €n,
wlen) = €.
We observe that A' = A~! and A™ = E. The characteristic polynomial of A4 is
-z 0 0 ... 1
I -z 0 ... 0

fA(:)}) =10 1 —-z... 0]= (-—1)"‘(;1,‘" - ]_)

0 0 0 ...-2
We will denote the polynomial f4(z) by f(z).

We will assume that (n,q) = p® = d and n = dn,, (p,ny) = 1, where p=T'F.
Let 2™ — 1 = fi(z)... fe(z) be the factorization of ™' — 1 into irreducible monic
factors over F'. Then the factorization of f(x) is

d d d d

f@) = ()@ - 1) = (-)"(z" -1) = ()" (@) (@) ... (f@) -

Let us denote by U, the space of all solutions of the homogeneous system with
matrix f3(A) fori=1,...,t, i.e. U; = Ker f#(y).
Theorem 2.1. The subspaces U; of F™ satisfy the following conditions:

1) U; s a p-invariant subspace of F™;

Q0 F" =U, & - & Uy

8) f&(z) is the monic polynomial of minimal degree in Flx] such that f#(A)u =
0 for allu e U; ;

4) foo, = (~1)398Si 8 In particular, dimU; = deg f,,, = ddeg fi:

5) There exist a vector u; € U; such that the vectors

Ui, Qo(ui)$ e vﬂodlm U‘-l(ui)

are basis of U;;
6)For each vector u in U; there exists a polynomial g € F[z] such that u =

(9(4)) (w).
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Proof: 1) Let u € Ui, ie. f&(Aju = 0. Then f(A)p(u) = fHA)Au =
Af¢(A)u = 0, so that p(u) € Us.

2) Let fi(z) = }1%)3 for i =1,...,t. Since (fl(x),...,f,(a:)) = 1, then by the
Euclidean algorithm there are polynomials a,(z),...,a:z) € Flz] such that

al(x)fl(:r') + - at(a:)ft(m) = 1.

Then for every vector v € V the condition v = a;(A4) FilAw + -+ + a(A) fi(A)w
holds. Let v; = a;(A)fi(A)v. Then fi(A)v; = a;(A)f(A)v = 0, so that v; € U;.

Hence
Fn=U1++(jt

Let us assume that v € U; 0 3, Uj. Then fHAWw = 0 and fi(A) = 0.
Since (f4, f;) = 1, there are polynomials a(z), b(z) € Flz], such that a(z)f(z) +
b(x) fi(z) = 1. Hence a(A)fH(A)v + b(A)f(A)v = v = 0 and we conclude that
Uin ;4 Uj = {0}. Thus .
F'=U,®---®U,.

3) Let m;(z) € F[z] be the monic polynomial of smallest degree such that
m;(A)u = 0 for all u € U;. By the division algorithm in F[z] there are polynomials
gi(x),r:(z) such that f¥(z) = mi(z)qi(z) + ri(z), where degri(z) < degm;(z).
Then for each vector u € U; we have f#(A)u = g;(A)m;(A)u + r;(A)u and hence
ri(A)u = 0. But this contradicts the choice of m;(x) unless ri(z) is identically
zero. Thus, m;(x) divides fé(x) for all i = 1,...,t. Therefore there are numbers
0 < 8; < dsuch that m;(z) = f(z). Set m(z) = my(z) ... my(z). Since m(A)u = 0
for all u € F™ and m(z) divides the minimal polynomial " — 1 of A, we conclude
that 2" — 1 = m(z). Then

fiz).. fi@) =a" — 1= f3'(2)... [ (2).

Now the statement follows from the uniqueness of the factorization of a polynomial
into irreducible factors.

4) Let k; = dimU;, 4 = 1,...,t and let fi(z) = felw,- We choose a basis
gg’),...,g,(:;) of U; over F,i = 1,...,t. Denote by A; the matrix of |y, in that

basis.
By property 2) we obtain that ggl), . ,g,(cf), e ,ggt), e ’91(;) is a basis of F™

and the matrix of o in that basis is

A =
Ay
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Besides A’ = T~ 'AT, where T is the change of basis matrix from the standard
basis of F™ to that one. Then

filA)
fi(A) = fil42) . = fi(T~'AT) = T fi(A)T.

fi(Ar)

Note that f;(A4;) = 0. Let gy) . /\;il)el +--- +/\§-i,)len, j=1,...,k;. Since gj(-i) € Ui,
we obtain

i i 0

) Aﬁ-l) ) )‘51) ) :
A [ 2 [ =THRAT [ =TfA) | 1] =0,

(2) (i) :

AJ n AJ n 0

where 1 is on the (k; +--- + k;—1 + j)—th position. Therefore f¢(z) divides f; for
alli=1,...,t. Let fi(x) = f*(z)g:i(z). Then

f(@) = fi@)... fulz) = fi(@)... f{@)91(2) ... ge().

It follows from the last identity that g;(z) = (_l)ddcg fi(x),
5) Let ey =uy +ug+---+us foru; € U;, i =1,...,t. Then

e2= ple1) = o(w) + @(uz) +--+ (u)
3= plea) = o*(w) + ¢*(uz) +---+ @(w)

--------------------------------------------------

Let v be an arbitrary vector from F™. Then

v=A1e1 + A€y + -+ + A, =
= Ai(ur +uz + -+ w) + Aap(ur) + @(ua) + - - + o(uy))+
+eo A" un) + " u2) + -+ 0" (wy) =
= (Mur + Aep(ur) + -+ - + An™ Hwy))+
+-- 4 (/\1ut + /\ng(ut) + -4+ /\ntp"‘l(ut))

Hence v; = Aju; + Aop(wi) + -+ + An@™ () holds for each vector v; € U; and
all i = 1,...,¢. Therefore U; = l{u;, p(u;),-..,9" }(u;)}. Since dimU; = k;, the
vectors

k,-—l(

Uq, (P(ui),---,(P u‘i)

are a basis of Us.
6)This follows from 5). O
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Theorem 2.2. Let U be a p—invariant subspace of U; for some 1 < i < t. Then
there ezists a number 0 < k < d such that U = Im ff (¢}, ) = Kcrfd k(p )=

Ker f&*(¢p).

Proof: Let the vector u; € U; be as in Theorem 2.1 and let us consider the set

= {g € Flz] | (9(4)) (w) € U}

It is easy to verify that J is a principal ideal in F[z]. Then there exists a monic
polynomial h € F|z] such that J = (h). We are going to show that U = ImA(sp), ).
First, let u € U. Then u = g(A)u; for a suitable polynomial g(z) € Ff[z] by
Theorem 2.1, 6). Since g(x) € J then g(z) = h(z)g(z). Hence u = (hg1)(A)u; =
h(A)gi(A)u; = h(A)v;, where v; € U;. Thus u € Im h(<p|,, ). Conversely, suppose
u € Imh(yp, ), i.e. u = h(A)v for some v € U;. Then v = g(A)u; for a suitable
polynomial g(z) € F[z] and hence u = h(A)g(A)u; = (hg)(A)ui. Since h(zx)g(x) €
J, we conclude that u € U.

Now we are going to show that h(z) = fF(z) for some 0 < k < d. Since
f(A)u; = 0. then f?(z) € J. Therefore h(z) divides f¥(z). Since fi(x) is an
irreducible polynomial, h(x) = f¥(z) for some 0 < k < d. Hence U = Im f,-"((p,,,i ).

It remains to prove that U = Ker f2* (1., )- We have

fEH AN fEA) = Fi(A) =0

where A; is the matrix of ¢y, .

Since each column of fF(A;) is a solution of the homogeneous system with
matrix f,f’“k(Ai), then U = Im fik(c,ol,,‘,) C Ker f{'"k(cph,‘, ). It is easy to verify that
Ker f;i‘k(cplui) = Ker fd—"( ). Now suppose u € Ker fd"‘(- ), i.e. fd'“'“(A)u = 0.
Then u € Ker f¥(¢) = U; and u = g(A)u; for a suitable polynomial g(z) € F|x].
Hence fz-d_k(A)g(A)u, = 0. Since f¢(z) is the minimal polynomial with the propert)
f3(A)u; = 0 we conclude that f¥(z) divides g(z). Thus g(z) € J and u € U, which
proves the statement. O

Proposition 2.1. Let U be a p-invariant subspace of F™. Then U is a direct sum
of subspaces of F™ of the form Ker f (¢), where 0 < s; < d.

Proof: Let U; = UNU;, i = 1,...,t. Then U, = Ker [ () for some 0 < s; < d.
Therefore - ~
U=UNFr=Un(U1& - &U)=U1&---&U.. O

3. LINEAR CYCLIC CODES

Definition 3.1. A code C with length n over F is called cyclic, if whenever r =
(c1,¢a,...,¢,) is in C| so is its cyclic shift y = (cn,C1,...,Cn—1)
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The following statement is clear from the definition.

Proposition 3.1. A linear code C' with length n over F is cyclic iff C is a
p—rnvariant subspace of F".

Theorem 3.1. Let C be a linear cyclic code with length n over F. Then the fol-
lowing facts hold.

1) C = U,, BB Ul,, for some p—invariant subspaces U = Ker f" () of
F* 0 <s, <d, and dim pC = 3" | s,deg fi, = k;
2) foice(@) = (DFI$ @) . i (2) = g(o);
3)celC iff g(A)e=0
4) the polynomial g(x) has the smallest degree with the property 3):
5)r(g(A)) =n—k |
Proof: 1) The first part of the statement follows from Proposition 2.1. Now we are

going to show that dim pKer f;" = s,deg f;,. Let us consider the following chain of
linear subspaces of F™

Ker f;, (p) C Ker f2 () C -+ C Ker ff (¢) =
Since the characteristic polynomial of the restriction of ¢ to Ker f! (p) divides

folo, =(— 1)ddeg fi, fd foralll = 1,...d, then for the dimensions of the respective
subspaces we obtain the following mcqualities of natural numbers

hideg fi, <ladeg fi, < --- <lydegf; =ddegf; .

Thus I; = i for ¢ = 1,...,d, which proves the statement. In particular, it follows
from the proof that f, (z) = (=1)%de9fi for(z).
Ulr ”

2) Let us denote a;, = dim l7 = spdeg f;, . We choose a basis usi") b ,uf,’,’ of
U;, over F,r=1,...,m and denote by B;, the matrix of Pl in that basis. Then
ug"), . uﬁ,f,'l), i, ,u(l'"), cey u,(l,’ ) is a basis of C over F and <,0|c has a matrix
B;,
B;,
B.

T

in that basis. Hence

Fotc@) = Foy @)-S, @) = ()R£3 @) o ().

i m

3) Let c € C. Then ¢ = u;, + - -- + u;,, for some u; € U’i,‘, r=1,...,m and
9(A)e = (=F[(f2 . fim ) A)us, + - + (f3 o i) (Aui,] =0
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Conversely suppose that g(A)c = 0 for some ¢c € F" and let ¢ = uy +--- +
s, u; € U;. Then g(A)c = (=DF[(f - (A +---+(ffl' o fi ) (A)ue] =0
so that g(A)[u;, +--- + uJ,] =0, where Gvyedid = {1, 1\ {i1, - im)- Set
v, = g(A)y;,, for all r=1,...,l. Hence v;, € U; and v;, +---+v; = 0 Therefore
v;, = 0 for all r . Sm('e (g, fd) = 1 there are polynomials a(z), b(z) € F[z],
such that a(x)g(:v)+b(:r)f‘f_ (z) = 1. Then u;, = a(A)g(A)u;, +b(A )f) (A)u;, =0.
Thus e =wu;, + -+ +u;, €C
We omit the proofs of 4) and 5), since they are clear. O

Definition 3.2. Let = = (z1,...,2n) and y = (y1...,yn) be two vectors in F™.
We define an inner product over F by (z,y) = z1y1 + -+ + Tn¥n- If {z,y) =0, we
say that x and y are orthogonal to each other.

Definition 3.3. Let C' be a linear code over F. We define the dual of C' (which is
denoted by C* ) to be the set of all vectors which are orthogonal to all codewords in

C. ie.
={veF"|(v,c)=0forallc€C}.

It is well known that if C' is k—dimensional, then C* is (n — k)—dimensional.
Besides the dual of a linear cyclic code is also cyclic.

Proposition 3.2. The matriz H, which rows are arbitrary n —k linearly indepen-
dent rows of g(A), is a parity check matriz of C.

Proof: The proof follows from the equation g(A)c = 0 for every vector ¢ € C and
the fact that r (g(A)) =n — k.

O
Let us denote
f(x) —k pd— d—
h(z) = == = (=1)""~f " *(x)... f{ "' (z),
@ =28 = (U@ @)
where 0 < s, <dforallr=1,...,t.
Let g1,,-..,91._, be abasis of C*, where g, is a I,—th vector row of g(A). By
the equation g(A)h(A) = O we obtain that (g;,,h;) =0 foreach:=1,...,n, 7=
1,...,n — k. The last equation gives us that the columns h; of h(A) are codewords

in C.

We show that r(h(A)) = k. By Sylvester’s inequality we obtain that r (0) =
0 >r(g(A)) +r(h(A)) —n. Thus r (h(A)) <n-r(g(4)) =n—-(n—-k) =k

On the other hand, Sylvester’s ,inequality, applied to the product
A(A) = (~1)"=K f=1(4) ... £*(A), gives us that r (h(4) 2 r(f{* (A) -+
r(f 5 (A) —n(t—1) =nt - dz,‘& deg f; +Zt_ s;deg fi—nt+n==~k. Therefore
r (h(A)) = k. Thus we have proved the following:

Proposition 3.3. The matriz G, which rows are arbitrary k linearly independent
rows of (h(A)), is a generator matriz of the code C.
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Let f, ., (z) = h. By Theorem 3.1 it follows that h is the polynomial of the

smallest dcgrce such that h(A)u = 0 for every u € C*. Let h*(z) = h(z)q(z)+r(z),
where degr(z) < degh(z). Then h*(A) = A"~ "(h(A‘)) = h(A)q(A) + r(A), hence
for every vector u € C* the assertion A"~*(h(A))'u = q(A)A(A)u + r(A)u holds,
so that r(z) = 0. Thus h(z) divides h*(z). Since both are polynomials of the same
degree , h*(z) = ah(x) where a € F is the leading coefficient of the product

(fi(z))%* ... (f*(z))?* . Thus

b= == () R (@) @) =

)"+ T (@) = () ] 7 ()
i=1 " i=1

where a; is the leading coefficient of (f7(z))?*. Note that the polynomials f,,(z)
are monic irreducible and divide f(z) = ( 1) (z™ - 1).

Now we show that C+ = U, @ --- & U,.., where U = Ker fd % (). By
Theorem 3.1 C*+ is the space of the solutlons of the homogeneous system with
matrix h(A) Let u e U = Jm @ - ®U,, and let u = Un, + 4 Un, for u,, €
Un,,7=1,...,t. Then

Y

(A)“ =(—1 n—k[ d SR 378")(A)un1 ’ (fd—q' fd 5 A)un:] =0

;:

Hence U < C*. Since dim pU = dim pC*, then
C'L — -(r‘— @ ce e (B —l]_n:
Thus we have proved the following:

Theorem 3.2. Let C = l71 DB l}t be a linear cyclic code over_& where (7_:
Ker f(¢), 0 < s; < d. Then the dual code of C is given by C+ =U,, ®--- @& U,
and fo1 () = (=1)** L (f1 ()% = (=1)4% fi7* (z) where (f}(x))*~* is the

reciprocal polynomial of ff""”' (z) with leading coefficient equals to a;, i =1,...,t
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