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CYCLIC CODES AS INVARIANT SUBSPACES
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The description of the linear cyclic codes as ideals in the algebra §, = Flz]/(z" — 1),
where F is a finite field, is well known in the coding theory. The map cyclic shift is a
linear operator in F™. Qur aim is to consider a new method of describing the cyclic
codes as invariant subspaces of F™ regarding this operator.
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1. INTRODUCTION

The linear cyclic codes are traditionally described using the methods of the
commutative algebra (see [2] and [3]). Since the linear codes have the structure of
linear subspaces of F™, the description of the linear cyclic codes in terms of the
linear algebra is natural. .

The main purpose of this paper is to study some properties of the cyclic codes
as invariant linear subspaces. Some generalizations for consta-cyclic codes are con-
sidered.

2. SOME LINEAR ALGEBRA

Let F = GF(q) and let F" be the n-dimensional vector space over F with
standard basis e; = (1,0,...,0), e2 = (0,1,...,0),...,e, = (0,0,...,1).
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Let
{ Fu —_ Fn
@

(ml»x2s~--’mn) — (xnpl']q--wmn—l) '
Then ¢ € Hom F™ and has the following matrix

000...1
100...0
A=1010...0
000...0
in the basis e),es,...,e,. Note that A = 4~! and A" = E. The characteristic

polynomial of A is

-z 0 0 ... 1
Il = 0 ... 0
fA('r) =10 1 —z... 0= (——l)n(xn — 1)

Let us denote it by f(z).
We show the following well known fact.

Proposition 2.1. Let U be a p-invariant subspace of V and dim rV = n. Then
Jolo (z) divides f,(x). In particular, if V=U & W and W is p-invariant subspace

Of Fn then fyo(x) = fvlgr(x)f‘p,w (‘T)

Proof: Let dim pU = k and let g1,...,gx be a basis of U over F. We complement
this basis to a basis g1, ..., gk, gk+1, - - ., gn of V. Then the coordinates of the vectors
©(91),-..,¢(gr) from the (k+1)-th vanish and hence in this basis ¢ has the matrix

(0111 ces g Qrk4l ... Qin \
s @kl --- Qkk Oyl ... kn | (A} B
10 0 kgrktr skt | N0 A/
\ 0 P 0 an‘k.*.] « e an,n )
&1y ... Qg
The matrix 4, = | .......... is obviously the matrix of ¢ in g1,...,gr. Then
. Q1 oo Ok

fo(z) =det (A" — zE) = det (Al ~zE B ) —

0 A2 —zF
= f‘PfU (z)det (Ag — zE). O
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Let m be the multiplicative order of ¢ modulo n, i.c., m is the smallest natural
number with the property that n divides g™ — 1. Then GF(g™) is the splitting field
of f(z) over F. Let f(z) = (=1)"fi(z)... fi(z) be the factorization of f(z) into
irreducible factors. We assume that (n,¢) = 1. In that case f(x) has distinct factors

fi(x), i =1,...,¢t, which are monic.
Let denote by U, the space of the solutions of the homogencous system with

matrix f;(A) for each i = 1,...,t, i.e., U; = Ker fi(y).
Theorem 2.1. The subspaces U; of F™ satisfy the following conditions:
1) U; is a p-invariant subspace of F™;
Q) F'=U, & --- & U
3) dimU; = deg f; = ki;
4) fol, (x) = (=) fi(z):
5) U; is a minimal p-invariant subspace of F™.
Proof: 1) Let u € Uy, i.e., fi(A)u = 0. Then f;(A)p(u) = fi(A)Au = Afi(A)u = 0,
so that ¢(u) € U;.
2) Let fi(z) = L&) for i = 1,....t Since (fi(x),...,fi(x)) = 1, by the

fi(x)
Euclidean algorithm there are polynomials a1(z),...,a:(z) € F|[z] such that

a-l(it)fl(l’)'*' +ay(x )ft( ) =

Then for every vector v € V the condition v = aI(A)fl (Ao +---+ at(A)ft(A)v
holds. Let v; = a;(A)f;(A)v. Then f;(A)v; = a;(A)f(A)v = 0 so that v; € Us.
Hence

=Uy+-+U.

Assume that v € U; N Y, Uj, then fi(A)v =0, fi(Aw = 0. Since (fi, fi) = 1,

there are polynomials a(z), b(z) € F(z], such that a(z) fi(z) + b(z) fi(z) = 1. Hence
a(A) fi(A)v + b(A) fi(A)v = v = 0, s0 that U; N Y, ,, U; = {0}. Thus

Fr=U&---aU.

3) Let g € U; be an arbitrary nonzero vector and let ¥ > 1 be the smallest
natural number with the property that the vectors g, ¢(g), - .., 9" 1(g) are lincarly
independent. Then there are elements cp,...,ck—; € F, at least one of which is
nonzero, such that

©*(g) = cog + c1p(g) + -+ + ck—1¢ 7 (9).

Consider the polynomial t(z) = z* — cx— 2% — .- — ¢ € F[z]. Since (t(p))(9) =
(f:i())(g) = 0, it follows that [(t(z), fi(z))(¢)](g) = 0. But (¥(z), fi(x)) is 1 or
fi(x). Hence (t(x), fi(x)) = fi(x) and f;(z) divides t(z). Thus k; = deg fi(z) <
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degt(xz) = k. On the other hand, the vectors g, ©(g),...,¢" (g) are linearly depen-
dent, since (fi(p))(g) = 0, and from the minimality of £ we obtain k = k;. Then
dimU; > k;. Therefore

t t. t
n=dmpF" =Y dimplU; 2 Y k=) degfi=degf=n

i=1 i=1 i=1
and dim pU; = k;.

4) Let g{i),...,g',(ci) be a basis of U; over F, 7 = 1,...,t, and let A; be the
matrix of |y, in that basis. Let f; = felv, - Suppose ( fis fi) = 1. Hence there
are polynomials a(z),b(x) € F[z], such that a(z) fi@) + b(z)fi(z) = 1. Then
a(A;) fi(Ai) + b(A;) fi(A;) = E. Therefore b(A;)fi(A;) = E. We will show that
fi(A;) = 0, which contradicts the last equation.

By the property 2) we obtain that ggl), e ,gﬁ), ... ,ggt), e ,g,(:') is the basis of
F™ and the matrix of ¢ in that basis is .

A
P
Ay
Beside this A’ = T~1AT, where 7' is the change basis matrix from the standard
basis of F™ to that one. Then

fi(Ay)
fi(A2)
fi(A") = e . = fi(T"'AT) =T fi(A)T.
fi(A¢)
Let g;.i) = /\g?e] 4+ /\S",)ten, j=1,...,k;. Since g;i) € U;, we obtain
X ’ A
A1 =T (AT [ 1| =T7'fi(A)| : | =0,
. . /\('i)
0 0 in

where 1 is on the (ki + - + ki—y + j)—th position. According to the last equation,
fi(A;) = 0. Thercfore (f;, fi) # 1. Since f; and f; are polynomials of the same
degree k; and f; is monic and irreducible, we obtain f; = (—1)% f;.

5) Let {0} # U C U;. Then by Proposition 2.1 we obtain f,,, divides f;. Since
the polynomial f; is irreducible, dim pU = dim pU; and U = U,. ]

Proposition 2.2. Let U be a p—1invariant subspace of F™. Then U is a direct sum
of some minimal p—invariant subspaces U; of F™.
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Proof: Let (7,; =UNU;,,i=1,...,t. Then U is {0} or U;, since U; are minimal.
Therefore '

U=sUNF=Un(U&al)=Ua& ol =HU. O

U.<U

3. LINEAR CYCLIC CODES

Definition 3.1. A code C with length n over F is called cyclic, if whenever x =
(c1,¢2,...,¢,) 18 in O, so is its cycle shift y = (¢p.€1,...,Cn—1).

The following statement is clear from the definitions.

Proposition 3.1. A linear code C' with length n over F is cyclic iff C' is a
w—1invariant subspace of F™.

Theorem 3.1. Let C' be a linear cyclic code with length n over F. Then the fol-
lowing facts hold.

1) C =U;, &---dU;, for some minimal p—invariant subspaces U;, of F™ and
dimpC =Fk;, +---+ ki, = k:

2) fwlc (‘T) = (_l)kf'i: (‘T) v fI (I) = g((lf);

3)ceC iff g(A)e=0

4) the polynomial g(x) has the smallest degree with the property 3;

5) r(g(A)) =n—k.
Proof: 1) This follows from Proposition 2.2.

2) Let ggi’),. gA “) be a basis of U; over F,r =1,...,s. Then ggi‘),...,
g,(c“) gt ,gk_lq is a basis of C' over F and ¢|c has a matrix
A;,
A,
A,

in that basis. Hence
fole(@) = fi(x) ... fi.(x) = (~1)ka b £, () fi (2).

Note that A; and f;, (x) are defined as in Theorem 2.1.

3) Lct ceC. Thon c=uy +-+u; for someu; € U;,r=1,...,5 and
g(A)C =\~ [(fu . z ( )uil +-t (fil . --fi_.,)(A)Ui,‘] =0

Converb(‘lyl suppose g{A)c = 0 for some ¢ € F™ and let ¢ = uy + -+ + uy,
u; € U;. Then g(A)e = (=D*[(fi, ... i (A)uy + -+~ + (fi, - - fi. )J(A)uy] = 0, so
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that g(A)[u;, + -+ +uj] = 0, where {j1,... 51} = {1,.. ., t}\{i1,...,is}. Let v =

uj + -+ uj, and
(V" —1) _ f()

9(x) g(z)
Since (h(x), g(x)) = 1, there arc polynomials a(z), b(x) € F[z] such that a(z)h(zx)+
b(z)g(z) = 1. Hence a(A)h(A)v + b(A)g(A)v =v=0and ¢ = u;, +---+u; € C.

4) Suppose b(z) € Flz] is a nonzero polynomial of smallest degree such that
b(A)e = 0 for all ¢ € C. By the division algorithm in F[z] there are polynomials
q(x),7(x) such that g(z) = b(z)g(z) + r(x), where degr(z) < degb(z). Then for
each vector ¢ € €' we have g(A)c = q(A)b(A)c+r(A)c and hence r(A)c = 0. But this
contradicts the choice of b(z) unless r(z) is identically zero. Thus, b(z) divides g(z).
If degb(z) < degg(zx), then b(x) is a product of some of the irreducible factors of
g(x) and without loss of generality we can suppose b(z) = (=1)F+ =tk f; fi,
and g < s. Let us consider the code C" = U;, & --- @ U;, € C. Then b(z) = f,..,
and by the equation g(A)c = 0 for all ¢ € C we obtain C' C €. This contradiction
proves the statement.

5) By the property 3) C is the space of the solutions of the homogeneous system
with matrix g(A). Then dim C = k = n — r(g(A)), which proves the statement.O]

h(z) =

Definition 3.2. Let z = (z1,...,2,) and ¥y = (y1...,yn) be two vectors in F™.
We define an inner product over F by (x,y) = z1y1 + -+ + Tayn. If (x,y) =0, we
say that  and y are orthogonal to each other.

Definition 3.3. Let C be a lincar code over F. We define the dual of C' (which is
denoted by C*) to be the set of all vectors which are orthogonal to all codewords
in C, i.e.,

Ct={ve F"|{v,c) =0forallc € C}.

It is well known that if C' is k—dimensional, then C*+ is (n — k)—dimensional.
Proposition 3.2. The dual of a linear cyclic code is also cyclic.

Proof: Let h = (hi,...,h,) € C+ and ¢ = (c1,...,¢n) € C. We show that p(h) =
(hnyh1y... haoy) € CL. We have

(p(h),c) = cthn + -+ cohp1 = (h, 97 (¢)) = (h," " (c)) =0,
which proves the statement. O

Proposition 3.3. The matriz H, whose rows are arbitrary n—k linear independent
rows of g(A), is a parity check matriz of C.

Proof: The proof follows from the equation g(A)c = 0 for every vector ¢ € C' and
the fact that r (g(A4)) =n — k. O

Let g;,,....q1,_, be a basis of O+, where g;, is a l,—th vector row of g(A). By
the equation g(A)h(A) = 0 we obtain that (g; ,h;) =0 foreachi=1,...,n,7 =
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1,...,n — k. The last equation gives us that the columns h; of h(A) are codewords
in C.

We show that r(h(A)) = k. By Sylvester’s inequality we obtain r(0) = 0 >
r(g(A))+r (h(A))—n. Since 1 (h(A)) < n—r(g(A)) = n—(n—k) = k. On the other
hand, Sylvester’s mequahty applied to the product h(A) = (—1)"~kf; (A)... f;,(4),
gives r(h(A)) > r;, + -+ 1 —nll—1) = nl kj, = —kjy —nl+n =
n—(kj +-+ky)=n—-—m—ki—-~k,)=n-(n-k =k Therefore

r (h(A)) = k. Thus we have proved the following:

Proposition 3.4. The matriz G, whose rows are arbitrary k linear independent
rows of (h(A))', is a generator matriz of the code C.

Lemma 3.1. If g(z) € F[z], then g(4 = g(A?) = (g(A))'. In particular. if n
divides deg g(z), then g*(A) = (g(A)), where g*(x) is the reciprocal polynomial of
9(x).
Proof Let g(z) = goz* + a* ™' + -+ + gr—1Z + gk, then g(A) = goAF 4 g1 AF1 +
+gk 1A+grE. Tranbposmg both sides of the last cquatlon we obtain (g(A
go(Ak) +g1 (AR 1) e g AlHgRE = go(AD +91(A) T+ 4 ge- 1A‘+ng -
g(A").
In particular, if degg(z) = ns for some s € N, then g*(A4) = A™g(A71)
= A™g(A') = g(A') = (9(A4))" O
Let f,,.. (z) = h. By Theorem 3.1 it follows that h is the polynomial of the
smallest degree such that h(A)u = 0 for every u € C*. Let h*(z) = h(z)q (1') +
-( z), where degr(z) < degh(x). Then by Lemma 3.1 h*(4) = A"~ "(h(A))
h(A)q(A) + r(A), hence for every vector u € C* the assertion A" ¥(h(A))'u =
q(A)h(A)u + r(A)u holds, so that r(z) = 0. Thus h(z) divides h*(z). Since both
are polynomials of the same degree , h*(z) = ah(z)' where a € F is the leading
coefficient of the product f} (z)... f;, (z). Thus

l

=_h*__( )n k-le J’_‘t _H—_fjr (— l)n_kfsl...fsl,

rlJ'

where a;j, is the leading coefficient of f (z). Note that the polynomials f,, (z) =
1 f * (z) are monic irreducible and divide f(z) = (—1)"[z" — 1].

Now we show that C*- = Us, &---®Us,. By Theorem 3.1 C* is the space of the
solutions of the homogeneoub system with matrix h(A) LetuelU=U;,&---aUs,
and let u = ug, + -+ +us, for us, € U, r=1,...,1. Then

h(Ayu = (1) (fo, - fo)(Aug, + -+ (fs, -+ fs)(A)us | = 0
Hence U < C+. Since dim pU = dim pC*, then
Ct=U, @ - dU,,.

Thus we have proved the following:
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Theorem 3.2. Let C = U;; & --- ® U;, be a linear cyclic code over F and
{7i,-..o} = {L,.. .. t}\{i1,...,i5}. Then the dual code of C is given by C*+ =
Us, -+ DUy, and f, (z) = (=15 f, (2) = (=1)k= ;:Tf;‘r(x), where [} (z) is the
reciprocal polynomial of f; (x) with leading coefficient equals to a;, , v =1,...,1.

Let C C F™ be an arbitrary, not necessary linear, cyclic code. Let us consider
the action of the group G = (p) = {id,p,...,¢"" '} = C, over F™. Then the
following theorem holds:

Theorem 3.3. C' = Q, U...UQy, where Q; are G-orbits and k; = |Q;| is a divisor
of |G| = n. In particural, |C| = Z k;.
i=1

4. CONSTA-CYCLIC CODES

In this section we give a generalization of the results obtained in the previous
sections.

Definition 4.1. Let a be a nonzero element of F. A code C with length n over F
is called consta-cyclic with respect to a. if whenever z = (¢y,¢z,...,¢,) is in C, so
is y = (acn,cC1,....Cn-1).

Let a € F. We consider the linear operator v, € Hom F™
Yot (T1,%2, ..., Tn) — (AT T1y ..oy Tey).

Its matrix in the standard basis e;, es,...e, of F™ is

000... a
100...0
B,=1010...0

000...0
The relations B; ! = B% and B = aF hold. The characteristic polynomial of B,

is fg,(z) = (—1)"(z™ -—"a). Let denote it by f,(x). We assume that (n,q) = 1. The
polynomial f, has no multiple roots and splits to distinct irreducible monic factors
fa(z) = (=1)"fi(z) ... fi(z). Let U; = Ker fi(¥,). It’s easy to see that Theorem 2.1
and Proposition 2.2 are true in this case, too.

The following statement is clear from the definition.

Proposition 4.1. A linear code C' with length n over F is consta-cyclic iff C is a
Ya—invariant subspace of F™.

The next theorem is analogous to Theorem 3.1 and we omit its proof.

178 Ann. Sofia Univ., Fac. Math and Inf., 98, 2008, 171-179.



Theorem 4.1. Let C be a linear consta-cyclic code with length n over F. Then the
following facts hold.

1)C=U; &...&U, for some minimal ¥, —invariant subspaces U, of F™
anddimpC'-_—ki, + -+ ki = k;

2) fouio(@) = (1) fi, (@) - fi (@) = g(2);

3)ce C iff g(By)e =05

4) the polynomial g(z) has the smallest degree with the property 3);

5) r(9(Ba)) =n - k.

Proposition 4.2. The dual of a linear consta-cyclic code with respect to a is consta-

cyclic with respect to -1—
a

Proof: The proof follows from the equality

(Ya(c), hY = (Bac, h) = (¢, Bth) = (¢, BT 'h) = a{c, ¥ "' (h)) = 0
for every c € C and h € C*. O
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