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1. INTRODUCTION

Let D be a bounded domain in the space R™ " of points T = (1) oo s Tin—1),
where m > 2, with a boundary 0D € C?,if m > 3. Let G = {z = (;r',a:m) e R™:
£ €D,0<z, <h},S={zecR™: 2 €8D,0< z,, < h},h = const.

We consider the operator |

m~—1 m
Lu = E ij(X)Uz,z, + k(T)Us,, 2, + zbi(x)uri + (@),
hy=1 i=1
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m~—1 m—
where k,a;; € C*(G), ajj =aj; fori,j=1,..., m—1; Z a;;(r)&€; = ag E E.,-Q
1,7=1 i=1
vz € Gand V¢ € R™™, ag = const > 0; k(z',0) = k(z’ h) <0 V:z:' € D;
b,e CY(G) fori=1,..., m: ¢ € C(G). We denote Dy = {.T eD: k(z, O = 0}
and D = {1" € D: (.’I‘ 0) < 0} Assume that D # 0, (b — ke, )z, h) =
(b, — (:r 0) vz € D and (b (1: 0) 7é 0Vz € Dy. All the functions
in the preqent paper are real-valued.
The operator L is elliptic, hyperbolic, parabolic at a point z € G, if k(z) >
0, k(z) <0, k() = 0, respectively. In our case L is an operator of mixed type in
G, because there are no restrictions on the sign of k(z) for z € G.
First we investigate the following nonlocal boundary value problem for the
linear equation

Lu= finG. (1.1)

To find a function u(z) defined in G which is a solution of the equation (1.1)
and satisfies the boundary conditions

u=0onS, u(z,h) =z ,0) in D, (1.2)
Uy, (z, h) = Au,,, (:L‘l,O) in D_, (1.3)

where f(x) is a given function and X\ # 0 is a given real constant.

In the case where k(z',0) = k(z',h) = 0 V&' € D the problem (1.1), (1.2)
was investigated in [9], [11] for 0 < |A] < 1, in [4] for 0 < A < 1 and in [12]
for A # 0. The problem (1.1) - (1.3) was investigated in [10] in the case where
k(r) < 0in G and 0 < |A| < 1. In [17] the problem (1.1) - (1.3) was considered
for0 < |\ <1, A= 1, k = k(zm), b; =0, a;; = &, where §] is the Kroneker’s

symbol, 7,7 = 1,. — 1, in the following cases: k(h) > 0 and k(0) > 0; k(h) 2
0> k(O) k(0) < 0 and k(h) < 0. The problem (1.1) - (1.3) with A = 1, b; =
0, a;j = =07, i,5=1,. —1, ¢ = ¢(z') was considered in [6] Another nonlocal

boundary value problem for the equation

h(y)uyy = uzsr + a(z, y)uy + b(z, y)u = f(z,y)
in {(z,y) :—l<y<l, 0 <z <1}, where h(l) > 0> h(—lj, was investigated in [7].
The formally adjoint operator to the operator £ is

m-—1

m
ﬁtv = Z aij(:p)vxlxj + k(I)UImIm + Zb:(x)v.'l‘: + C*(a:),v *

i,j=1 i=1

m—1
where b}, = 2k, — by, b = 2 E Qije;, — bi, i =1,...,m~1, and ¢* = ¢ -

m—1
Z biz, + Z Qijz;z; + Ke,,z,,- The adjoint boundary conditions to (1.2}, (1.3) are
i=1 i.3=1

v=0o0nS, v(z,0)=Av(z ,h)in D, (1.4)
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Vs, (.TC’,O) = vz, (x’,h) in D_, - (L.5)

We denote by C? and C? the sets of all functions belonging to QZ(G) and
satisfying the conditions (1.2), (1.3) and (1.4), (1.5), respectively. Let W' be the

closure of C? with respect to the norm ||ul|; = (||u|lg+z l|tz, ||2)"/? of the Sobolev
i=1 |

space W, (G). We use the notations (.,.)o and ||.|[o for the usual scalar product

and norm of Ly(G). Let W} be the closure of the set C? with respect to the norm

Il Let f € Lao(G).

Definition 1.1. A function u(z) is called a weak solution of the problem (1.1)
- (1.3), if u € W! and N '
(u, L*v) = (f,v)o Yv € C2. _ (1.6)

Definition 1.2. A function u(z) is called a classical solution of the problem
(1.1) - (1.3), if u € C? and Lu(z) = f(z) Vz € G.
Denote

m—1

Blu, v] = / (—(kv)s, Uz, — (@ijV)e; Us; + (cu+ Zbium)v] dx
G 1 1=1

1.j=

for u,v € W (G). Let F(z,t) be a given function, defined in G x R. We assume
that F € CAR , i.e. F(x,t) is continuous with respect to ¢ for almost every xz € G
and it is measurable with respect to z € G for every t € R.

Further we consider the following nonlocal boundary value problem for the

nonlinear equation
Lu = F(z,u) in G. (1.7)

To find a function u(z) defined in G which is a solution of (1.7) and satisfies the
boundary conditions (1.2)and (1.3).

Definition 1.3. A function u(2) is called a weak solution of the problem (1.7),
(1.2), (1.3), if u € W! and

Blu, v] = (F(z,u), v)o Yo € W} (1.8)

Nonlocal boundary value problems for different nonlinear equations of second
order of mixed type are considered in (4], (6], [13].

In the present paper we consider the case |A| < 1. In the section 2 we prove
some preliminary results and Theorem 2.1 for uniqueness of a weak solution of the
problem (1.1) - (1.3). In the section 3 we establish an important a priory estimate,
prove Theorem 3.1 for existence of a weak solution and Theorem 3.2 for uniqueness
of a classical solution of the same problem. Applying these results and Schauder’s
fixed point theorem, existence of a weak solution of the problem (1.7), (1.2), (1.3)
is proved in section 4. Using Lemma 2.5 we get uniqueness of that solution in
Theorem 4.2. Some of the results were announced in [14] without proofs.
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2. UNIQUENESS OF A WEAK SOLUTION OF THE LINEAR PROBLEM

Applying the Gauss - Ostrogradski’s theorem in (1.6) we get

Lemma 2.1. A function u(z) is a weak solution of the problem (1.1) - (1.3)
if and only if u € W' and the equality

Blu, v] = (f,v)o Yv € W} ‘ (2.1)
holds.

m—1

Denote f3; = b; — E aijz, for j=1,...,m -1 and v = h~1InA2. Obviously
i=1
v < 0.

Lemma 2.2. Let u € C(G) and
h

V(z) = - / exp(—uO)u(a'l, 0) d6 + I/\_1 exp(—uﬂ)u(x',a) df (2.2)
Jo —1Jo

for x € G.Then a constant éy(\) > 0, depending only on X exists such that
[VIlo < éo(A)h|lullo. (2.3)

Proof. Applying the inequality 2ab < a? + b? for a, b € R and the Holder
inequality for integrals we obtain

V() < 483N /O " exp(—2v6) db)] /0 "2 0)do),

where ¢2(A) = max(1, A2(A — 1)72). Since exp(—2v8) < exp(—2vh) = A~* for
1
|A] < 1, then (2.3) takes place with é(A) = 24711 — A)~? for 5 < A < 1 and

Go(A) =222 for -1 < A < %, A # 0.
It is not difficult to prove the following

Lemma 2.3. Let u € C? and V be the function defined by (2.2). Then
V, Ve, € C%*(G), V satisfies the conditions (1.4) and V,, =0 on S, V,,(z ,0) =
AVe(z,h)inD, i=1,2,...,m.
Lemma 2.4. For each u € W' @ unique element V.€ W} exists with the
property: if {u,}5%, C C? is a sequence convergent to u strongly in W3 (G), and
. |

V(z) = — /O ) exp(—u@)un(x’,ﬁ)dﬁ+% O exp(=10)un(z,0)d0  (2.4)

forx e G, n=1,2,.... then V, .V strongly in W3(G). The inequality (2.3)
takes place for each u € W' and its corresponding element V € W1.
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Proof. Let u € W', {u,}2, C C? and u, — u strongly in W3 (G). Further
we shall omit the word "strongly”. It follows from Lemma 2.2 that ||V, — Villo <
Go(Mhllun — usllo Vn € N, Vs € N. Then V € Ly(G) exists such that V, — V' in

“ oV,
L,(G). Differentiating with respect to z; the integrals in (2 4) we calculate 5;2
‘7

OV,
Iy a

in G for 1 <i < m— 1. Lemma 2.2 implies that ||

3“% lo ¥n € N, Vs € N. Hence %n s Wi in Ly(G). Obviously gV n—nc

' exp(—u:z:m)u in Ly(G). Then the generahzed derivatives of V are V,, = w;, i =
..., m—1, Vo = —exp(—vz,)u (see 15}, Ch. 1, Theorem 4.1). Hence Vo — V
in W2 (G) and V € W} due to Lemma 2.3.

Further, if {i,}2%, € C? is convergent to u in W3 (G) and

< Co(/\)hilgz_“ -

~

T h '
Va(z) = - / exp(— Vﬂ)un(:r 0) do + /\/\—1/ exp(—v0)u,(x ,6) do
Jo
inG, n=1,2,..., then V, "-_;of/ in W} (G). The inequality
IV = Vo < IV = Vallo + Go(Mhllun — Gnllo + [[Va = Vlio

implies that V = V almost everywhere in G. Clearly the corresponding element V
to u € C? is given by (2.2).

It follows from (2.4) and Lemma 2.2 that |[V,]lo < Go(A)h[unlo ¥n € N.
Taking a limit in this inequality, we obtain (2.3) for an arbltrary u € W' and its
corresponding element V € W, .

Lemma 2.5. Let the derwatives bma,,z,,s Kzpzpmam: Com €TS8t and belong to
C(G). Let |\ <1, v=h""'1nA? and the following conditions

ai;(z  h) =ay(z ,0)Vz €D, i,j=1,...,m—1, (2.5)
(2by — ks, + vk)(z) > 204 in G, ay = const >0, - (2.6)
¢ m—1 m—1
3 [~vai(x) - Gije,, (@))€ > a1 Y V2 €C
{ W= . = (2.7)
and V€ € R™ ' a; = const > = max Z[ﬁ] =
\ x =1

2 . A
V[C - (bm - kmm )flfnl] + Cepy — (bm - kxvn)xmrm 2 ?._I(Z |ﬂj2]‘ |)2 n G’ (2'8)
j=1

e = (b — Kz, Vo, (@ 1) € [ = (b ~ K, ) )(x ,0) in D (2.9)

hold. Then for every u € W' and for its corresponding element V from Lemma 2.4
one has

Blu, V] > % /Gexp(--z/:z;,,,,)u2 dz. (2.10)
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Proof. Let u € C? and V be given by (2.2). Using the equality u(z) =
~ exp(VZm ) Vs, () we express the first order derivatives of u by those of V up to the

second order and put them in B[u V]. Then, applying the Gauss - Ostrogradski’s
theorem , we find

Blu, V) = ~{ [ exp(vm)(~bm + 5ks,. ~ SRIV2, do+
G

m~—1

1
+§ Lexp(uxnz) Z (aija:,,, + Vaij)vx" V"’J’ dz—

ij=1
m—1
/exp VI )V, Zﬂ,V dr — /exp(vzm)VVx, Zﬂﬂ, dx—
G
Jj= J=1

/ exp me [V(C - ( - k'—’:m )Im) + Cﬂ:m - (bm - k$m)$mxm]v2 dJ‘+
G

l\?lo—-

6

+—/ exp(vzm)lc — (bm — kz,. )z, |V Nm ds} = Z I;.
The other integrals on dG are equal to zero. As usual, (nj,...,n,,) is the unit
normal vector of G outward to GG. Using the Holder inequality for sums and the
inequality

lab] < % 2~I€b2 for a,beRande>0 (2.11)

we obtain the estimate

m—1 m—1
1
I3 + I;] €< — max Bi(x)]? / exp(vy, Vf, dx+
|3 + L] alc:];[’()],c ( ); ,
1 m-—1
+ﬂ/ exp(vzm)V2 dx + —/ exp(u.rm)Vz(Z 1Bjz,|)? dz.
2 G m ay Ja =1 !

Then from (2.6) - (2.9) it follows that

Blu, V] > % / exp(vem)VZ dz.
G

Hence (2.10) holds for every u € C? and V from (2.2). The general case of Lemma
2.5 is a consequence of the considered case and Lemma 2.4.

Theorem 2.1. Let [A\| < 1, v = h~'InA? and all the assumptions of Lemma
2.5 hold. Then the problem (1.1) - (1.3) can have no more than one weak solution.
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Proof. If u, and uy are two weak solutions of problem (1.1) - (1.3), then
u = u; — up is a weak solution of that problem for f = 0. We apply Lemma 2.5
with V', corresponding to u according to Lemma 2.4. It follows from Lemma 2.1,

(1.6) and (2.10) that 0 > (—’2-1- / exp(—vz, )u’ de. Hence u = 0 almost everywhere

G
in G, i.e. u; = ug almost everywhere in G.
3. EXISTENCE OF A WEAK SOLUTION OF THE LINEAR PROBLEM

Lemma 3.1. Let the derivative c,,, erist and belong to C(G). Let (2.5) hold
and p be a function, defined in [0, h]. such that

p(0) > p(h)A?, (3.1)

p € CY([0, h)]), p(@m) # 0 Yz, € [0, ], (3.2)

k(z , h)p(h)A? > k(z,0)p(0) Vz € D, (3.3)

c(x h)p(h)A? > c(:z; 0)p(0) vz € D, (3.4)

(cp' +pes,,)(@) <O Vz € G, (3.5)

(26, — ks, )p — P'K](T) > 209 in G, az = const >0, (3.6)

rfn—l m—1

Z (p’aij + paijz,, ) ()€€ = a2 Z é; Yz € G and
V7 (3.7)

™m-—
Vf'eRm_l, as = const > 0, a3> — maxz (xm ﬁJ ,

\

Then a constant ¢, > 0 ezxists such that the mequalzty
(Lu, piz,,)o > & lull} (3.8)

holds for every u € C2.

Proof. Let u € C? and p(z,,) satisfies the assumptions (3.1) - (3.7). Applying
the Gauss - Ostrogradski’s theorem we obtain

2(Lu,pugz,, o —/[2bmp (Pk)az,, Ju2, dx+/ Z(Pau)x Uz, Uy, dT+

i]“‘

m~—1

m—1
+2/ DU, z Bjug, dx —_/(pc),cmu2 dx —/ P Z Qij Uz, Uz, Nm AS+
G = G aG

1,7=1

+/ pku? n, ds +/ peu’n,, ds +/ P Z QijUz, MUy, ds = Z Ji,
aG aG aG

1,7=1
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where (ny,n,...,n,,) is the unit outward normal vector of G.
Clearly

m—1
Iy = [ 100) = ) - (et e ), 0)

1,7=1

Jo= [ & WpWX2 ~ k(e Op(O2, (', 0) i,

Jr = /D ez, R)p(R)N? — e(z’, 0)p(0)]u(z’ 0) da .

It follows from (1.2), (1.3), (2.5) and (3.1) - (3.5) that Jg = 0,J; > 0,1 = 4, 5,6,7.
Applying the Holder inequalities for integrals, sums and the inequality (2.11),
we obtain the estimate

m—1 m—1 m—1
1 .
12/ P, E Biug, dz| _<_02/ ug dr + —/ pz(z ﬂf)(z ui,.)dz.
G j=1 G a2 Ja j=1 j=1

The Sobolev imbedding theorem ([1], 5.4) implies the inequality

m
lulld < Ko 3~ ffua, I3 Vu € €2,

=1

where K, is a positive constant depending only on G. From these estimates, {3.6)
and (3.7) it follows that
Jv+ Jo + T3 > 28 ||ul)?

with ¢; = min(az, az). This completes the proof.

1
2Ky
Theorem 3.1. Let the derivative c,, ezist and belong to C(G). Let (2.5) hold

and for some function p(z,,) the assumptions (3.2). (3.4) - (3.7) be satisfied. Let

p(0) = p(h)A%. (3.9)

Then for every f € Ly(G) there exists a weak solution U of the problem (1.1) -
(1.3) and the inequality

1Tl < é&llfllo (3.10)

ey~ P2
holds with ¢, = == == :
onC2éﬁm %%W%M
Proof. Let v € C2. The function

Ton h
() = /0 P O)oe,0)db + / P O)(c, 0) df
- 0
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is the unique solution from C? of the equation pu,, = v. The condition (1.3) is
valid on D because of (3.9). Obviously

vllo < p2fluls. (3.11)

Let Vif ~! be the Hilbert space with negative norm constructed by the spaces L2(G)
and W1 (see [3], 1.1.1). Denote its norm by |.||- and its inner product by (.,.)-1.
Thus

(Cutn 'U)O - (uva E*'U)() S "‘C*U”-l”uv”ln-
Applying (3.8) and (3.11) to the left-hand side we obtain the estimate

%“UNO < [|L*v||-1 Vv € C2. ' (3.12)

This estimate implies the existence of a weak solution U of the problem (1.1) - (1.3)
for the given f € L2(G) (see [3], 2.3.4). i

Indeed, consider the set Y* = {w € C(G) : w = L*v,v € C?}. Clearly
Y* € Ly(G) ¢ W' and Y* is a linear space. The mapping L* : C2 - Y*is
one-to-one mapping, due to (3.12). Then the formula

p(w) = (f,0)0, w = L*,
defines a linear functional on Y*. The Cauchy’s inequality and (3.12) imply
le(w)l < Nl fllollvllo < &2l fllollwll-1, w e Y™.

Hence ¢ is a bounded functional. It can be extended by the Hahn - Banach’s
theorem to a linear continuous functional ¢ on W1 satisfying the inequality
|d(w)| < éllfllollw]-1 Ve € WL, This inequality implies that [|¢]| < & f]lo-
Obviously ¢(L*v) = (f,v)o, Vv € C2.

Since W~ is a Hilbert space, the Riesz representation theorem provides the
existence of a unique element U/ € W~ such that ||¢|| = ||U]|-; and

o(w) = (U, w)_) Yw e WL,

Further, there exists an element U € Wt with the properties (see [3], 1.1.1)
(U, v)o = (U, v)-1 Yo € Ly(G) and ||U||; = ||U]|-1. It follows that U satisfies
(3.10) and (1.6), i.e. U is a weak solution of the problem (1.1) - (1.3).

Remark 3.1. If we take p(z,,) = exp(=vzn), v = A1 InA? then (3.9) and
(3.2) are satisfied and the conditions (3.4) - (3.7) turn to

(26 — ke, + vEk)(x) > 202 in G, ag = const > 0,

m—1 m~1

Z (—vay + aijz,, )(€)€:& > a2 Z ¢2 Vr € G and
$ 1= =t (3.13)

m—1
, m—1 2
ve' e R™ . ay = const > 0, as > — (z)]?,
13 as as > ~ mgx ;[ﬂj(m)]
(—ve+cp, )(2) <0in G, ¢(z',h) > e(z,0) in D.
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In Theorem 3.1 we can also take p(z,,) = 2, + hA%(1 — A%)~1 as in [10].
Example 3.1. Consider the equation

m=—1

(kugz, Vs, + Z Uy;z, + bus, +cu= f(z), (3.14)
i=1
h? h?
where k(z) = ~(22, — hz,, +g), 0< g < - b=const. If g = T the equation
2

(3.14) is hyperbolic - parabolic in G. If 0 < g < %, this is an equation of mixed
type in G. Let d(:z:/) <0, de C(D), v="h"InA2. We shall notice the following
cases: '

h? h )
1/g=7,b>§,0<|/\|<1,c=d(x);
2/0<g<%.bzg, e“gl,\|<1,c=d(a:');
h? h h g 1 h
- = - L — , =——h—-26. e
3/0<g< y 2>b>2 5o € S Al <exp(~p), py 2g( ), ¢
d(zr);
h? h g 2
4/0<g<—4-,b>§—5,e > |Al > exp(=p2), p2 = hlb+ (b +g-
h? 1. h2

715 =207 e=d(@’) or ¢ = d(z) exp(2m(@m — h)h~2).

In these cases the assumptions of Theorem 2.1 and (3.2), (3.9), (3.13) with
p(zm) = exp(—vzx,,) are satisfied.

Remark 3.2. It is shown in [11] that (3.6) is very important condition for
the existence of a weak solution of the problem (1.1), (1.2) in the case k(z',0) =
k(z' ,h) =0Vz € D.

Theorem 3.2. Let the assumptions of Lemma 3.1 hold. Then the problem
(1.1) - (1.3) can have no more than one classical solution.

| Proof. If u; and u, are two classical solutions of the problem (1.1) ~ (1.3), then
U =1u) —uz is a classical solution of that problem for S =0. Applying Lemma 3.1

- we get 02 éffuflf. Hence w =01in G, i.e. u; = uy in G.
1

4. THE NONLINEAR PROBLEM

Let us consider the problem (1.7), (1.2), (1.3). Assume that there exist positive
constants L,n and a function 4 L2(G) such that 1 > né,, where Cs is the constant
from Theorem 3.1, and

[(z,t) ~ F(z,5)| < Lit - s|Vz € G, Vt,s € R, (4.1)

|F(x,t)| < 273 {A(z) + [(&2) "2 — n°)3|t|} Vz € G, ¥t e R. (4.2)
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Theorem 4.1. Let the assumptions for F(x,t) and the assumptions of The-
orem 2.1 and Theorem 3.1 hold. Then the problem (1.7), (1.2), (1.3) has at least
one weak solution.

Proof. Tet Ag = ||Allo. Consider the set W = {w € Lo(G) : |lwllo < Aon~'}.
The inequality (4.2) gives (see [5], 12.10 and 12.11)

1F(x,w)||2 < [[4]12 + [(22) 7% = n?]llwlls < A3(éam) >

for every w € W. Let w € W and U, be the unique weak solution of the problem
(1.1) - (1.3) for f(x) = F(x,w) due to Theorem 2.1 and Theorem 3.1. From (3.10)
and the estimate for || F'(x, w)||o it follows

[Uwllo < 10wl < éllF(z,w)llo < Aon™ "

Hence U, € W N W',

We define an operator T : W — W by the formula Tw = U,,. The equality
(2.1) shows that B{Tw, v] = (F(z,w), v)o Vv € W!. Applying the Schauder’s fixed
point theorem ([5], 30.11) we shall establish that this operator has a fixed point.

Obviously W is a bounded, closed, nonempty subset of the Hilbert space L2(G).
It is a convex set, because || w1+ (1= p)wallo < pllw;flo+(1—p)|fwallo < Aoy~ for
every wy, wes € W and 0 < u < 1. Consider a sequence w;, wa, ws, ... belonging
to W. Let wo € W and ||w, — wgl|lo — 0. Denote U,, = Tw,, n=0,1,2,.... We
have T i

B(U,, — Uy, v] = (F(z,ws) — F(z,wp), v)o Yv € Wl

i.e U, —Uj is the unique weak solution of the problem (1.1) - (1.3) for f = F(z,w,)—
F(z,wg). It follows from (3.10) and (4.1) that U, — Upllo < GllF(z,wy,) —
F(z,wo)l|o < éoLjjw, — w0|[0 — 0. Hence the operator T : W — W is con-
tinuous.

In order to prove that T is a compact operator we have to show that the
set T(M) is a precompact set in Ly(G) for every bounded set M € W (see [1],
1.16 and [5], 3.10). Since T'(M) C T(W), it is sufficient to establish that T(W) is a
precompact set in La(G). Consider an arbitrary sequence U, = Tw,, n=1,2,....
It is bounded in W!, because

Unlls € 4on™", n=1,2,.... (4.3)

This inequality and the Rellich - Kondrashov imbedding theorem ({1}, 6.2) imply the
existence of a subsequence {Uj,,; }72, strongly convergent in L2(G) to an element u.
Since T'(W) C W and W is closed then u € W. Therefore T(W) is a precompact
set, i.e. T(W) is a compact set in Lo(G) ([8} Ch. 1, 5.1). Let us notice that W' is a
Hilbert space with the inner product of W, (G). It follows from (4.3) and Theorem
1.17, (1] that the subsequence {Uy;}7%; can be chosen to be weakly convergent in

W' to @ e W'. Then Un, — @ weakly in L(G) (see [15], Ch. 1, pp. 60 - 61).

"n— o

Hence u =4 € W'.
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The Schauder’s fixed point theoregl implies the existence of a fixed point U of
the operator T', i.e. U = T(U). Thus U € W! and

BU, v] = (F(z,0), v)o Vv € W},
i.e. U is a weak solution of the problem (1.7), (1.2), (1.3).

In the proof of Theorem 4.1 we have applied the same method as in [2, 16],
where local boundary value problems for nonlinear equations of mixed type in two-
and three-dimensional domains have been investigated.

Theorem 4.2. Let the assumptions for F (z,¢) with L < a1[2hég(A)], where
co(A) is the constant from Lemma 2.2, and the assumptions of Theorem 2.1 and
Theorem 3.1 hold. Then the problem ( 1.7). (1.2), (1.3) has exactly one weak solu-
tion.

Proof. Let Uy, Us be two weak solutions of (1.7), (1.2), (1.3) and v = U, — Us.
Then v € W1 and

Bfu, V] = (F(z,U)) - F(z,Us), V),

where V € W} is the corresponding to u« element due to Lemma 2.4. It follows
from Lemma 2.5 and (4.1) that % / exp(—van,)u® dz < Lljuflo/|Vllo. Applying
G

(2.3) and the inequality 1 < exp(-—l/a:n;) for z,, > 0, we obtain

(8% -~
5 lullg < Lhao(A) ulf3

Suppose |uflo # 0. Since L < a[2héy(A)]~", then Lhéo(A)u2 < %uuug. So we
have come to a contradiction. Hence u = 0 almost everywhere in G.
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