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COHESIVE POWERS OF COMPUTABLE STRUCTURES

RUMEN DIMITROV

We develop the notion of cohesive power B of a computable structure A over a cohe-
sive set R. In the main thecorem of this paper we prove certain connections between
satisfaction of different formulas and sentences in the original model A and its cohesive
power B. We also prove various facts about cohesive powers, isomorphisms between
them and consider an example in which the structure A is a computable field.

1. INTRODUCTION

In the study of the structure of the lattice £*(V4 ) we came upon a field with
elements that are partial computable functions. We noticed that the construction
of the field had certain similarities with the classical model theoretic ultrapower
construction. We are now studying similar structures in a more general setting.
We introduce the notion of cohesive power of a computable structure and prove
an analogue of the fundamental theorem for ultraproducts [1]) for cohesive powers.
The connection of cohesive powers of computable fields and the structure of £* (V)
is described in the concluding remarks.

A set R is cohesive if for every computably enumerable (c.e.) set W either
W N R or WNR is finite. There are continuum many cohesive subsets of w. There
are cohesive sets with computably enumerable complements. The c.e. complements
of such cohesive sets are called maximal. For a fixed computable structure A and a
cohesive set R we define the R—cohesive power B of A. The satisfaction of sentences
in B is connected to the existence of decision procedures for different segments of
the complete diagram of A. If A is a decidable structure, then A4 and B will be
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elementarily equivalent. If A is computable then A and B satisfy the same II, and
Yo sentences.

We will use ¢g, ¢, ... to refer to arbitrary partial computable (p.c.) functions.
Also, we assume a fixed enumeration ¢q, @1, ... of the (unary) partial computable
functions. We will write ¢, () = y if e,z,y < s and y is the result of the e — th
computation on input n in less than s steps. In this case we will also write ¢, () |.
By ¢.(z) | we mean that 3s[¢.s(z) = y]. The enumeration of the e-th c.e. set
We = dom(¢.) is given as W, s = dom(¢..s). We let use normal equality symbol =
(instead of ~) between partial computable functions. In definitions of p.c. functions
we will assume that the function on the left side is defined when all of the elements
on the right hand side are defined and the expression is acceptable for the particular
values of the functions. For example, ¢ = 'J" means that

T ifu(a) L, wz(x) |, and ¥a(x) 0
unde fined otherwise

p(r) =

2. MAIN RESULT

Let A be a computable structure over a fixed computable language L and let
R C w be a cohesive set. If ¥ is a formula in L, then we will use {r : A |=
U(py(z),...,9on(x))} as a shorthand for

{x: 353, ...3t,,(/\(¢,-,s(x) =t )ANAEU(t, ... t)}).

Definition 2.1. The cohesive power of A over R is a structure B (denoted
[1A )in L such that:
R

1. B={p: ¢ is a p.c. function, R C* dom(yp). rng(p) C A}/ =g

Here o1 =p w2 if RC" {x :¢1(z) |= pa(z) |}. The equivalence class of
w.r.t. =g will be denoted by [p|r or simply [p] when the set R is fized.

2. If f € L is an n-ary functional symbol. then [fB([1],...,[pn])] is the equiv-
alence class of a p.c. function such that

Bler],- -, [en)@) = A1 (), .- ., onl)).

8. If P € L is an m-ary predicate symbol. then PB is a relation such that
®(ler)s-- s lom]) F RC {2 : PA(pi(2),..., pm(x))}.

4. If c € L is a constant symbol. then the interpretation of ¢ in B is the equiva-
lence class of the total computable function with constant value c?.
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The domains of the partial computable functions in the definition above contain
the set R and form a filter in the lattice £. The role that the cohesiveness of R
plays in the theorem below is similar to the role the maximality of the ultrafilter

plays in the ultraproduct construction.

Theorem 2.1. (Fundamental theorem of cohesive powers)

1L If(y1,. .., yn) is a term in L and [p1],. .., [pn) € B, then [TB([p1],- .., [pn])]
is the equivalence class of a p.c. function such that T8 ([e1]s-- s len))(@) =

TA((YQI (l’), R ‘fon(:r))

2. If ®(y1,...,yn) is a formula in L that is a boolean combination of £, and 11,
formulas and [p4), ..., [¢n] € B, then

B ®(p].....len]) WWRC {z: A ®(p1(2),...,0n(@))}-

3. If ® us a Il3 sentence in L. then B |= ® implies A = .

4. If ® is aIly (or X3) sentence in L, then B = ® iff A = ®.

Proof. (1) The proof is straightforward but we note that we essentially use the
fact that the operations in A are computable.
(2) We proceed by induction:

(2.1) Let ®(y1,....yn) = P(ri(y1,---+Yn)s-- s Tn(¥1,---,¥n)) be an atomic
formula and suppose [¢;] = 78([¢1], ..., [¢n]). Then

Bl (e, [enl)

iff

B = P([yu], ..., [¥m])

iff

RC*{r: AE P(Y1(x), ..., Ym(x))}
iff

RC* {z: AE ®(p1(2),-...om(x))}

(2.2) Suppose ®(y1,...,yn) = P1(y1,---,Un) AP2(y1,...,y,) and the claim is
true for ®;(yy....,yn) i =1,2. Then

B = ®([p1], ..., [enl)

iff

B '= q>l({(pl]a LRI [‘Pn]) a'nd B # @2([?1], R {8‘97’»])
iff

RC* {z: AE ®i(p1(2),...,pn(x))} and

RC* {z: AE ®(pi(x),...,0on(x))}
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iff
RC*{z: AEP(p1(x),....on(x))}.

(2.3) Suppose ®(y1, ... .yn) = YV(y. y1,..., yn) and ¥(y, y1,....¥Yn) is @ quan-
~ tifier free formula for which the claim is true.

(2.3a) Suppose B = Jy¥(y, [¢1].....[pn]) and suppose that the p.c. function
@ is such that B | ¥([¢], [¢1],-..,[¢n]). By the inductive hypothesis R C* {x :
Al W(p(@), p1(@), - nl2))} and so

RC* {z: Al 3y¥(y,pi1(2),. .., on(2))}-

(2.3b) Suppose R C* {r : A | y¥(y,o1(x),...,¢n(x))}. Since the struc-
ture A is computable and ¥(y,y1,...,¥n) is quantifier free we can define a partial
computable

p(x) = py € AlAE ¥(y, 01(2),. .., pn(T))]-
Then
{r : ARV, oi(z),...,0n(T))} =
{;TC : A ‘= ‘I’((P(l’),(,O](.I),...,(pn(fl?))}

and R C* {z : A E Y(p(x),o1(z),...,0n(x))}. By the inductive hypothesis
B = ¥([].[¢1]s .-, [en]) and so B |= Iy ¥(y, [pi1, - . -, [pnl)-

(2.4) Suppose ®(y1,...,¥n) = "¥(y1,-..,yn) and Y(yy,...,y,) is a 3; formula
for which the hypothesis is true.

(2.4a) Suppose B = ®([¢1], ..., [¢n]) and let
D={x: AE¥Y(pi(x),...,pa(x))}

Since B ¥ ¥([1], ..., [vn)), then R €* D. Because ¥(y1,...,¥,) is a £; formula
and ¢; for i < n are p.c., then D is a c.e. set. Since R is cohesive we have

RN D =* 0. Also, since R C* ﬂ dom(yp;), then for almost all x € R we have

AE U(p(z),...,pon(x)). Therefore R C*{z: AE"¥(pi(z),...,0n(x))}.
(2.4b) Suppose R C* {x : A E"¥(p1(z),...,¢n(z))}. Then

Rn{z: AE¥(p(x),...,0n(x))} ="0

and by the inductive hypothesis B ¥ ¥([¢1], ..., [¢n]). Therefore
B (1), [n]).

(3) Let & = Vy3zVtW(y, 2,t) where ¥(y, z,t) is a quantifier free formula. Let
¢ € A be arbitrary and let p.(x) = ¢ for every z € w. Let [p| € B be such that
B = ViU (o], [¢],t). By (2) above we have R C* {z : A |= Vt¥(p.(z), p(x). t)}.
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Then R C* {x : A |= 32Vt¥(c, z,t)}. The set is R is nonempty and z is not a free
variable of 32Vt (e, 2.t). Therefore A |= 32Vt¥(c, 2,t) and so A |= P.

(4) Let ® = Vy32W(y, =) where ¥(y, 2) is a quantifier free formula.
(4a) The fact, that A = ® whenever B = @, follows from (3).

(4b) Suppose that A = @ and let [¢] € B be arbitrary. We have that R C*
dom(p) = {z: A= =¥ (p(x),2)}. By (2), B 32¥([p],2) and so B |z ®. O

Note that if the structure A is decidable, then we can similarly prove the
following:

Theorem 2.2. If A is a decidable structure, then

1. If ®(yy,....yn) is a formula in L, and [@1] ,n] € B . then

B ®([p1).....[en)) F RS {22 A @(p1(2),..., 0u(2))}.

2. If ® is a sentence. then

BEo iff A .

Proof. (1) The proof is almost identical to the proof of part (2) of the main
theorem. We note only that for any formula ¥(y,,...,y,) the set {(a;....,an) :
Ak ¥(a....,an)} is computable. Then the set {z: A ¥(p1(z),...,¢n(x))} is
c.e. and steps 2.3 and 2.4 of the proof above can be carried for any formula .

(2) Follows directly from (1). O

Definition 2.2. For c € A let [p.] € B be the equivalence class of the total
function @, such that p.(x) = ¢ for every x € w. The map d: A — B such that
d(c) = [¢] is called the canonical embedding of A into B.

Proposition 2.1. The following hold:
1. If the structure A is finite. then B = A.

2. If the structure A is decidable, then the canonical map d is an elementary
embedding of A into B.

3. I ®(y1....,yn) is ally or a £y formula in L and cy,...,c, € A. then

AE®(ey,...,cn) iff BE®(d(cy),...,dcn)).
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Proof. (1) Let [¢] € B be arbitrary. For an) ce€ Alet X, = {z:p(z) =c}

and notice that X, is a c.e. set. Since dom(p) = |J X. and A is finite, then for
(EA

some ¢; € A the set X., N R is infinite. Since R is cohesive we have R C* X,
and therefore [p] = [p.,]. Therefore all equivalence classes in B correspond to the
constants in 4 and the canonical embedding of A into B is a 1-1 map. So B= A
follows directly from the definition of B3.

(2) Let ®(y1,....yn) be a ¥y (or 1) formula and let ¢y,...,c, € A. If Ais
decidable, then

B 2([pe,].-- - [@e,]) iff

RC*{z: A ®(c1,...,cn)} iff

AE ®(cy,....cn).

(3) Let ¢;,...,¢, € A and let Le = LU {¢1,...,c,} be the language L ex-
- panded by adding a constant symbol for each ¢;. Let A¢ be the structure A with

the constant symbols cq,...,c, interpreted as c¢y,...,c, correspondingly. Let B¢

be the R—cohesive power of A¢. Then ®(cq,...,c,) will be a £, (or II) sentence
in L and by the Fundamental theorem part (4)

.AC F@(C],...,Cn) lfch k:d)(ch...,c,,)

which is equivalent to
A= ®(cy,...,c,) iff B = ®(d(cy),....d(c,)).0

Definition 2.3. Two sets A, B have the same 1-degree up to =" (denoted
A =} B) if there are Ay =* A and By =* B such that A\ =, By.

Proposition 2.2. IfMl =} My are mazimal sets, By = [] A. and Bz = 11 A.

My M

then B1= B,.

Proof. Let M! =* M; for i = 1,2 be such that M] =, Mj. Let B! = [] A and
M

notice that B/= B; for i = 1,2. Using Myhill Isomorphism Theorem (see [6, p.24])
we let o be a computable permutation of w such that o(Al]) = M). Define a map
® : B, — B as follows:

D([v]) = [¢] where @(x) = Y¥(o(x)). We now prove that ® is an isomorphismn
of B and Bi:

(1) Notice that v =g7 o iff m C* {x : ¥(x) = Pofx)} iff m c* {z:
U (o)) = va(o(x))} iff @(2;) =07 ®(12). So @ is correctly defined and injective.
Finally, if [p] € B{ and ¥(x) = ¢(o~ ' (z)), then ®([v)]) = [¢].

(2) Let f € L be an n-ary functional symbol.
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Then &(| B (). . ... [¥m])]) is the equivalence class of a p.c. function such

that D([fB([6n]. .., [ga))])(@) = FAW (@) -, V(o ().
That means that S([fB([n].. .., [Wa])]) = [FBU(R([1]), . ... B([wn]))]-

(3) If P € L is an m-ary predicate symbol, then
PB5 (], [¢n]) iff

A'_f:; C* {z: PA(U;’I(T')v ooyt () fiff

M C* {z : PA(W (0(x)). ..., 0m(o(x)))} iff
PE (@([¢1])..... ®([¢n])).0

Proposition 2.3. FEvery computable automorphism of A can be extended to
an automorphism of B.

Proof. Let o be a computable automorphism of 4. Define a map o on B as
follows: '
a([e]) = []

where (n) = o(p(n)). The proof that ¢ is an automorphism of B is straightforward.
Notice also that if ¢ € A and ¢(n) = ¢ for almost every n € R, then &([¢])(n) is
the constant o(c) for almost every n € R. J

Example. Let F be a computable field and let I be a maximal set. Then
F= H F'is a field such that:

1. F = Fif F is finite,
2. If [p] € F is algebraic over F, then ¢ is a constant function on 7.

3. Every computable automorphism o of F' can be extended naturally to an
automorphism o of F.

Proof. We will prove only (2), (1) and (3) follow directly from the propositions
above. Suppose [¢] € F is root of a polynomial g(x) € F [z]. Extend the language
of F' by adding new constants for each coefficient of the polynomial g. Let F} be the
cohesive power of F' over I in the extended language. By the fundamental theorem
of cohesive powers we have

Fi k= (9(l¢) = 0F) iff TC* {2 : F = (g(p(x)) = 07)).

This means that p(z) € F is a root of the polynomial g(z) for almost every z € I.
Since g(x) can have finitely many roots, then C' = {¢ : 3z[(p(x) = ¢) A (g(c) = 0)]}
is finite. For each ¢ € C let X. = {z : p(z) = ¢}. Notice that X, is c.e.. Using the
fact that I is cohesive we notice that

Vey, e € Cley # 02 — (| X, NI] < o0 or | Xe, Nn1| < o0)].
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Since C' is finite this implies that for some ¢ € C we will have T C* X,.. This means
that [p] is the equivalence class of a function that has value con 1. O

3. CONCLUDING REMARKS

As we mentioned an example of cohesive powers appears naturally in the study
of the structure of the lattice of subspaces of the fulliy effective vector space Vi
over a computable field F. The lattice of computably enumerable subspaces of
Vs modulo finite dimension is denoted £*(Vyx ). The study of V. was initiated
by Metakides and Nerode in [5]. The lattice £*(Vx) is an interesting modular
analog of £*, the extensively studied (see [6]) lattice of c.e. sets modulo finite sets.
Different cohesive powers of the field F' appear (see {3]) in the characterization of

principal filters of closures of quasimaximal sets.
n

Let Q@ = [ Ii where I; (i < n) are maximal subsets of [y—a fixed computable
i=1
basis of V.. Suppose that I; (i < n) are partitioned into k equivalence classes with

respect to the relation =} of having the same 1-degree up to =*. Suppose that
the i ~ th equivalence class has n; elements. In [3] we proved that the principal
filter in £*(V.c) of the linear span of Q is isomorphic to the product of the lattices
(L{n;, F;))k_,. Here L£(n;, F;) is the lattice of subspaces of an n;-dimensional vector
space over a field F’, The field I?', is the cohesive power of F' w.r.t. a cohesive set R;
that is the complement of a maximal set from the i-th equivalence class described
above.
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