ГОДИШНИК НА СОФИЙСКИЯ УНИВЕРСИТЕТ "СВ. КЛИМЕНТ ОХРИДСКИ" ФАКУЛТЕТ ПО МАТЕМАТИКА И ИНФОРМАТИКА Том 99

ANNUAIRE DE L'UNIVERSITE DE SOFIA "ST. KLIMENT OHRIDSKI"
FACULTE DE MATHEMATIQUES ET INFORMATIQUE
Tome 99

SOME THEOREMS ON THE CONVERGENCE OF SERIES IN BESSEL-MAITLAND FUNCTIONS ¹

Jordanka Paneva-Konovska

Some important properties of the power series in complex domain are given by the classical Cauchy-Hadamard, Abel and Tauber theorems. In this paper we prove same type theorems for series in the Bessel-Maitland functions.

Keywords: Cauchy-Hadamard, Abel and Tauber theorems, Bessel-Maitland function

2000 MSC: 30B10, 30B30; 33C10, 33C20

1. INTRODUCTION

Some important properties of the power series $\sum_{n=0}^{\infty} a_n z^n$ in a complex domain are given by the classical Cauchy-Hadamard, Abel and Tauber theorems.

In general, by the classical Abel theorem, from the convergence of a power series $f(z) = \sum_{n=0}^{\infty} a_n z^n$ at a point z_0 , follows the existence of the limit $\lim_{z \to z_0} f(z) = f(z_0)$, when z belongs to a suitable angle domain with a vertex at a point z_0 . The geometrical series [6, p.92]: $\frac{1}{1+z} = 1 - z + z^2 - z^3 + \dots$ at $z_0 = 1$ gives an example that, in general, the inverse proposition is not true, i.e. the existence of this limit

¹This work is partially supported by National Science Research Fund - Bulgarian Ministry of Education and Science, under Grant MM1305/2003

does not imply the convergence of the series $\sum_{n=0}^{\infty} a_n z_0^n$ without additional conditions on the growth of the coefficients.

The corresponding classical result is given by the following theorem.

Theorem (Tauber). If the coefficients of the power series satisfy the condition $\lim_{n\to\infty} na_n = 0$ and if $\lim_{z\to 1} f(z) = S$ $(z\to 1 \text{ radially})$, then the series $\sum a_n$ is convergent and $\sum_{n=0}^{\infty} a_n = S$.

It turns out that Abel's theorem fails even for series of the type $\sum_{k=1}^{\infty} a_{n_k} z^{n_k}$, where $(n_1, n_2, \ldots, n_k, \ldots)$ is a suitable permutation of nonnegative integers [6, p.92]. Therefore, it is interesting to know if for series in a given sequence of holomorphic functions, a statement like Abel's theorem is available. A positive answer to this question for series in Laguerre and Hermite polynomials is given in [5, §11.3], [1], and for Bessel functions - in [4].

Let $J^{\mu}_{\nu}(z)$ be the so-called Bessel-Maitland function, see [2, p.336, 352], [3, p.110]:

$$J^{\mu}_{\nu}(z) = \sum_{k=0}^{\infty} \frac{(-z)^k}{k! \; \Gamma(1+\nu+\mu k)}, \quad z \in \mathbb{C}, \quad \mu > -1.$$

Let us consider series of the form

$$\sum_{n=0}^{\infty} a_n z^n J_n^{\mu}(z), \quad z \in \mathbb{C}, \quad \mu > 0.$$
 (1)

We prove in this paper the corresponding Cauchy-Hadamard, Abel and Tauber type theorems for series in Bessel-Maitland functions of form (1).

2. A CAUCHY-HADAMARD TYPE THEOREM

Denote for shortness:

$$\tilde{J}_n^{\mu}(z) = z^n J_n^{\mu}(z), \quad n = 0, 1, 2,$$

The following asymptotic formula can be easily verified for the Bessel-Maitland functions:

$$\widetilde{J}_n^{\mu}(z) = z^n (1 + \theta_n^{\mu}(z)) / \Gamma(n+1), \quad z \in \mathbb{C}, \quad \mu > 0,$$

$$\theta_n^{\mu}(z) \to 0 \quad \text{as} \quad n \to \infty \quad (n \in \mathbb{N}).$$
(2)

Theorem 1 (Cauchy-Hadamard type). The domain of convergence of the series (1) is the circle domain |z| < R with a radius of convergence $R = 1/\Lambda$, where

$$\Lambda = \limsup_{n \to \infty} (|a_n| / \Gamma(n+1))^{1/n}. \tag{3}$$

The cases $\Lambda = 0$ and $\Lambda = \infty$ are incorporated in the common case. if $1/\Lambda$ means ∞ , respectively θ .

Proof. Let us denote

$$u_n(z) = a_n \widetilde{J}_n^{\mu}(z), \quad b_n = (|a_n| / \Gamma(n+1))^{1/n}.$$

Using the asymptotic formula (2), we get

$$u_n(z) = a_n z^n (1 + \theta_n^{\mu}(z)) / \Gamma(n+1).$$

The proof goes in three cases.

- 1. $\Lambda=0$, then $\lim_{n\to\infty}b_n=\limsup_{n\to\infty}b_n=0$. Let us fix $z\neq 0$. Obviously, there exists a number N_1 such that for every $n>N_1$: $|1+\theta_n^{\mu}(z)|<2$ and $2b_n<1/|z|$ which is equivalent to $|u_n(z)|=b_n^n|z|^n|1+\theta_n^{\mu}(z)|<2^{1-n}$. The absolute convergence of (1) follows immediately from this inequality.
- 2. $0 < \Lambda < \infty$. First, let z be inside the domain |z| < R $(z \in \mathbb{C})$, i.e. |z|/R < 1. Then $\limsup_{n \to \infty} |z|b_n < 1$. Therefore, there exists a number q < 1 such that $\limsup_{n \to \infty} |z|b_n \le q$, whence $|z|^n b_n^n \le q^n$. Using the asymptotic formula for the common member $u_n(z)$ of the series (1), we obtain $|u_n(z)| = b_n^n |z|^n |1 + \theta_n^{\mu}(z)| \le q^n |1 + \theta_n^{\mu}(z)|$. Since $\lim_{n \to \infty} \theta_n^{\mu}(z) = 0$, there exists N_2 : for every $n > N_2 |1 + \theta_n^{\mu}(z)| < 2$ and hence $|u_n(z)| \le 2q^n$. Since the series $\sum_{n=0}^{\infty} 2q^n$ is convergent, the series (1) is also convergent, even absolutely.

Now, let z lie outside this domain. Then |z|/R > 1 and $\limsup_{n \to \infty} |z|b_n > 1$. Therefore there exist infinite number of values n_k of n: $|z|^{n_k}b_{n_k}^{n_k} > 1$. Because $\lim_{n \to \infty} \theta_n^{\mu}(z) = 0$, there exists N_3 so that for $n_k > N_3$; $|1 + \theta_{n_k}^{\mu}(z)| \ge 1/2$, i.e. $|u_{n_k}(z)| \ge 1/2$ for infinite number of values of n. The necessary condition for convergence is not satisfied. Therefore the series (1) is divergent.

3. $\Lambda = \infty$. Let $z \in \mathbb{C} \setminus \{0\}$. Then $b_{n_k} > 1/|z|$ for infinite number of values n_k of n. But, from here $|u_{n_k}(z)| = |z|^{n_k} b_{n_k}^{n_k} |1 + \theta_{n_k}^{\mu}(z)| \ge 1/2$ and the necessary condition for the convergence of the series (1) is not satisfied and we conclude that the series (1) is divergent for every $z \ne 0$.

3. AN ABEL TYPE THEOREM

Let $z_0 \in \mathbb{C}$, $0 < R < \infty$, $|z_0| = R$ and g_{φ} be an arbitrary angle domain with size $2\varphi < \pi$ and vertex at the point $z = z_0$, which is symmetric in the straight line defined by the points 0 and z_0 . The following theorem is valid:

Theorem 2 (Abel type). Let $\{a_n\}_{n=0}^{\infty}$ be a sequence of complex numbers, Λ be defined by (3), $0 < \Lambda < \infty$. Let $K = \{|z| < R, R = 1/\Lambda\}$. If f(z) is the sum of the series (1) on the domain K and this series is convergent at the point z_0 of the boundary of K, then $\lim_{z \to z_0} f(z) = \sum_{n=0}^{\infty} a_n \widetilde{J}_n^{\mu}(z_0)$, for |z| < R and $z \in g_{\varphi}$, i.e.

$$\lim_{z \to z_0} f(z) = \sum_{n=0}^{\infty} a_n \widetilde{J}_n^{\mu}(z_0), \quad z \in g_{\varphi}. \tag{4}$$

Proof. Consider the difference

$$\Delta(z) = \sum_{n=0}^{\infty} a_n \widetilde{J}_n^{\mu}(z_0) - f(z) = \sum_{n=0}^{\infty} a_n (\widetilde{J}_n^{\mu}(z_0) - \widetilde{J}_n^{\mu}(z)), \tag{5}$$

representing it in the form

,
$$\Delta(z) = \sum_{n=0}^{k} a_n (\widetilde{J}_n^{\mu}(z_0) - \widetilde{J}_n^{\mu}(z)) + \sum_{n=k+1}^{\infty} a_n (\widetilde{J}_n^{\mu}(z_0) - \widetilde{J}_n^{\mu}(z)).$$

Let p > 0. By using the notations

$$\beta_m = \sum_{n=k+1}^m a_n \widetilde{J}_n^{\mu}(z_0), \quad m > k, \quad \beta_k = 0,$$

$$\gamma_n(z) = 1 - \widetilde{J}_n^{\mu}(z) / \widetilde{J}_n^{\mu}(z_0),$$

and the Abel transformation [1], we obtain consequently:

$$\sum_{n=k+1}^{k+p} a_n (\widetilde{J}_n^{\mu}(z_0) - \widetilde{J}_n^{\mu}(z)) = \sum_{n=k+1}^{k+p} (\beta_n - \beta_{n-1}) \gamma_n(z)$$

$$= \beta_{k+p} \gamma_{k+p}(z) - \sum_{n=k+1}^{k+p-1} \beta_n(\gamma_{n+1}(z) - \gamma_n(z)),$$

i.e.

$$\sum_{n=k+1}^{k+p} a_n (\widetilde{J}_n^{\mu}(z_0) - \widetilde{J}_n^{\mu}(z)) = (1 - \widetilde{J}_{k+p}^{\mu}(z) / \widetilde{J}_{k+p}^{\mu}(z_0)) \sum_{n=k+1}^{k+p} a_n \widetilde{J}_n^{\mu}(z_0)$$

$$-\sum_{n=k+1}^{k+p-1} (\sum_{s=k+1}^n a_s \widetilde{J}_s^{\mu}(z_0)) (\frac{\widetilde{J}_n^{\mu}(z))}{\widetilde{J}_n^{\mu}(z_0))} - \frac{\widetilde{J}_{n+1}^{\mu}(z))}{\widetilde{J}_{n+1}^{\mu}(z_0))}).$$

From the asymptotic formula (2), it follows that there exists a natural number M such that $\widetilde{J}_n^{\mu}(z_0) \neq 0$ for n > M. Let k > M. Then, for every natural n > k:

$$\widetilde{J}_n^{\mu}(z)/\widetilde{J}_n^{\mu}(z_0) - \widetilde{J}_{n+1}^{\mu}(z)/J_{n+1}^{\mu}(z_0) = (z/z_0)^n \tag{6}$$

$$\times \frac{(1+\theta_n^{\mu}(z))(1+\theta_{n+1}^{\mu}(z_0))-(z/z_0)(1+\theta_{n+1}^{\mu}(z))(1+\theta_n^{\mu}(z_0))}{(1+\theta_n^{\mu}(z_0))(1+\theta_{n+1}^{\mu}(z_0))}.$$

For the right hand side of (6) we apply the Schvartz lemma. Then we get that there exists a constant C:

$$|\widetilde{J}_{n}^{\mu}(z)/\widetilde{J}_{n}^{\mu}(z_{0})-\widetilde{J}_{n+1}^{\mu}(z)/J_{n+1}^{\mu}(z_{0})| \leq C|z-z_{0}||z/z_{0}|^{n}.$$

Analogously there exists a constant B:

$$|1 - \widetilde{J}_{k+p}^{\mu}(z)/\widetilde{J}_{k+p}^{\mu}(z_0)| \le B|z - z_0| \le 2B|z_0|.$$

Let ε be an arbitrary positive number and choose $N(\varepsilon)$ so large that for $k > N(\varepsilon)$ the inequality

$$\left|\sum_{s=k+1}^{n} a_s \widetilde{J}_s^{\mu}(z_0)\right| < \min(\varepsilon \cos \varphi/(12B|z_0|), \varepsilon \cos \varphi/(6C|z_0|))$$

holds for every natural n > k. Therefore, for $k > \max(M, N(\varepsilon))$:

$$|\sum_{s=k+1}^{\infty} a_s J_s^{\mu}(z_0)| \le \min(\varepsilon \cos \varphi/(12B|z_0|), \varepsilon \cos \varphi/(6C|z_0|),$$

and

$$|\sum_{n=k+1}^{\infty} a_n (\widetilde{J}_n^{\mu}(z_0) - \widetilde{J}_n^{\mu}(z))| \le (\varepsilon \cos \varphi/6) (1 + \sum_{n=k+1}^{\infty} |z_0|^{-1} |z - z_0| |z/z_0|^n)$$

$$\leq (\varepsilon\cos\varphi/6)(1+|z-z_0|/(|z_0|-|z|)).$$

But near the vertex of the angle domain g_{φ} in the part d_{φ} closed between the angle's arms and the arc of the circle with center at the point 0 and touching the arms of the angle we have $|z-z_0|/(|z_0|-|z|)<2/\cos\varphi$, i.e. $|z-z_0|\cos\varphi<2(|z_0|-|z|)$. That is why the inequality

$$\left|\sum_{n=k+1}^{\infty} a_n (\widetilde{J}_n^{\mu}(z_0) - \widetilde{J}_n^{\mu}(z))\right| < (\varepsilon \cos \varphi)/6 + \varepsilon/3 \le \varepsilon/2 \tag{7}$$

holds for $z \in d_{\varphi}$ and $k > \max(M, N(\varepsilon))$. Fix some $k > \max(M, N(\varepsilon))$ and after that choose $\delta(\varepsilon)$ such that if $|z - z_0| < \delta(\varepsilon)$ then the inequality

$$\left|\sum_{n=0}^{k} a_n (\widetilde{J}_n^{\mu}(z_0) - \widetilde{J}_n^{\mu}(z))\right| < \varepsilon/2 \tag{8}$$

holds inside d_{φ} . We get

$$|\Delta(z)| = |\sum_{n=0}^{\infty} a_n (\widetilde{J}_n^{\mu}(z_0) - \widetilde{J}_n^{\mu}(z))|$$

for the module of the difference (5). From (7) and (8) it follows that the equality (4) is satisfied.

4. A TAUBER TYPE THEOREM

Let us consider the series $\sum\limits_{n=0}^{\infty}a_n,\ a_n\in\mathbb{C}.$ Let $z_0\in\mathbb{C},\ |z_0|=R,\ 0< R<\infty,\ J_n^{\mu}(z_0)\neq 0$ for $n=0,1,2,\ldots$. For shortness, denote

$$J_{n,\mu}^*(z;z_0) = \frac{\tilde{J}_n^{\mu}(z)}{\tilde{J}_n^{\mu}(z_0)}.$$

Let the series $\sum_{n=0}^{\infty} a_n J_{n,\mu}^*(z;z_0)$ be convergent for |z| < R and

$$F(z) = \sum_{n=0}^{\infty} a_n J_{n,\mu}^*(z; z_0), \quad |z| < R.$$

Theorem 3 (Tauber type). If $\{a_n\}_{n=0}^{\infty}$ be a sequence of complex numbers with

$$\lim\{na_n\} = 0,\tag{9}$$

and there exists

$$\lim_{z \to z_0} F(z) = S \quad (|z| < R, z \to z_0 \text{ radially}),$$

then the series $\sum_{n=0}^{\infty} a_n$ is convergent and

$$\sum_{n=0}^{\infty} a_n = S.$$

Proof. For a point z of the segment $[0, z_0]$ we have

$$\sum_{n=0}^{k} a_n - F(z) = \sum_{n=0}^{k} a_n - \sum_{n=0}^{\infty} a_n J_{n,\mu}^*(z; z_0)$$

$$= \sum_{n=0}^{k} a_n \frac{\tilde{J}_n^{\mu}(z_0)}{\tilde{J}_n^{\mu}(z_0)} - \sum_{n=0}^{\infty} a_n \frac{\tilde{J}_n^{\mu}(z)}{\tilde{J}_n^{\mu}(z_0)}$$

$$= \sum_{n=0}^{k} a_n \frac{\tilde{J}_n^{\mu}(z_0) - \tilde{J}_n^{\mu}(z)}{\tilde{J}_n^{\mu}(z_0)} - \sum_{n=k+1}^{\infty} a_n J_{n,\mu}^*(z; z_0)$$

and therefore

$$\left| \sum_{n=0}^{k} a_n - F(z) \right| \le \sum_{n=0}^{k} |a_n| \left| \frac{\widetilde{J}_n^{\mu}(z_0) - \widetilde{J}_n^{\mu}(z)}{\widetilde{J}_n^{\mu}(z_0)} \right| + \sum_{n=k+1}^{\infty} |a_n| \left| J_{n,\mu}^*(z; z_0) \right|. \tag{10}$$

By using the asymptotic formula (2) for the Bessel-Maitland functions, we obtain:

$$a_n J_{n,\mu}^*(z;z_0) = a_n \left(\frac{z}{z_0}\right)^n \frac{1 + \theta_n^{\mu}(z)}{1 + \theta_n^{\mu}(z_0)} = a_n \left(\frac{z}{z_0}\right)^n \left(1 + \widetilde{\theta}_{n,\mu}(z;z_0)\right).$$

Let ε be an arbitrary positive number. We choose a number N_1 so large that the inequalities $|1 + \tilde{\theta}_{k,\mu}(z;z_0)| < 2$, $|ka_k| < \frac{\varepsilon}{6}$ hold as $k \ge N_1$. If $k > N_1$ and z is on the segment $[0,z_0]$, then for the second summand in (10) the following estimate is valid:

$$\sum_{n=k+1}^{\infty} |a_{n}| \left| J_{n,\mu}^{*}(z;z_{0}) \right| = \sum_{n=k+1}^{\infty} |a_{n}| \left| \frac{z}{z_{0}} \right|^{n} |1 + \widetilde{\theta}_{n,\mu}(z;z_{0})|$$

$$\leq 2 \left| \frac{z}{z_{0}} \right|^{k+1} \sum_{n=k+1}^{\infty} |a_{n}| \left| \frac{z}{z_{0}} \right|^{n-k-1} \leq 2 \sum_{n=0}^{\infty} |a_{n+k+1}| \left| \frac{z}{z_{0}} \right|^{n}$$

$$= 2 \sum_{n=0}^{\infty} \frac{\left| (n+k+1)a_{n+k+1} \right|}{n+k+1} \left| \frac{z}{z_{0}} \right|^{n} < 2 \sum_{n=0}^{\infty} \frac{\varepsilon/6}{n+k+1} \left| \frac{z}{z_{0}} \right|^{n}$$

$$< \frac{2}{k} \frac{\varepsilon}{6} \frac{1}{1-|z/z_{0}|} = \frac{\varepsilon}{3} \frac{1}{k} \frac{|z_{0}|}{|z_{0}|-|z|} .$$

$$(11)$$

Now let us consider the first summand in (10). We have:

$$\sum_{n=0}^{k} |a_n| \left| \frac{\tilde{J}_n^{\mu}(z_0) - \tilde{J}_n^{\mu}(z)}{\tilde{J}_n^{\mu}(z_0)} \right|$$

$$= \sum_{n=0}^{m} |a_n| \left| \frac{\tilde{J}_n^{\mu}(z_0) - \tilde{J}_n^{\mu}(z)}{\tilde{J}_n^{\mu}(z_0)} \right| + \sum_{n=m+1}^{k} |a_n| \left| \frac{\tilde{J}_n^{\mu}(z_0) - \tilde{J}_n^{\mu}(z)}{\tilde{J}_n^{\mu}(z_0)} \right|.$$

According to Schwarz's lemma, there exists a constant C such that

$$\left|\frac{\widetilde{J}_n^{\mu}(z_0) - \widetilde{J}_n^{\mu}(z)}{\widetilde{J}_n^{\mu}(z_0)}\right| < C|z - z_0|.$$

Moreover, there exists a number N_2 such that the following inequality

$$\sum_{n=0}^{m} |a_n| \left| \frac{\widetilde{J}_n^{\mu}(z_0) - \widetilde{J}_n^{\mu}(z)}{\widetilde{J}_n^{\mu}(z_0)} \right| \le C |z - z_0| k \frac{\sum_{n=0}^{m} |a_n|}{k}$$

$$< C |z - z_0| k \frac{\varepsilon}{3RC} = |z - z_0| k \frac{\varepsilon}{3R}.$$
(12)

holds as $k > N_2$. It remains to estimate the sum

$$\sum_{n=m+1}^{k} |a_n| \left| \frac{\widetilde{J}_n^{\mu}(z_0) - \widetilde{J}_n^{\mu}(z)}{\widetilde{J}_n^{\mu}(z_0)} \right|.$$

To this end, using asymptotic formula (2) for the Bessel-Maitland functions, we find consequently:

$$\frac{\widetilde{J}_{n}^{\mu}(z_{0}) - \widetilde{J}_{n}^{\mu}(z)}{\widetilde{J}_{n}^{\mu}(z_{0})} = \frac{(z_{0})^{n}(1 + \theta_{n}^{\mu}(z_{0})) - z^{n}(1 + \theta_{n}^{\mu}(z))}{z_{0}^{n}(1 + \theta_{n}^{\mu}(z_{0}))} = 1 - \left(\frac{z}{z_{0}}\right)^{n} \frac{1 + \theta_{n}^{\mu}(z)}{1 + \theta_{n}^{\mu}(z_{0})} \\
= 1 - \left(\frac{z}{z_{0}}\right)^{n} \left[1 + \frac{\theta_{n}^{\mu}(z) - \theta_{n}^{\mu}(z_{0})}{1 + \theta_{n}^{\mu}(z_{0})}\right] = 1 - \left(\frac{z}{z_{0}}\right)^{n} - \left(\frac{z}{z_{0}}\right)^{n} \frac{\theta_{n}^{\mu}(z) - \theta_{n}^{\mu}(z_{0})}{1 + \theta_{n}^{\mu}(z_{0})}.$$

Therefore,

$$\left| \frac{\widetilde{J}_{n}^{\mu}(z_{0}) - \widetilde{J}_{n}^{\mu}(z)}{\widetilde{J}_{n}^{\mu}(z_{0})} \right| \leq \left| 1 - \left(\frac{z}{z_{0}} \right)^{n} \right| + \left| \frac{z}{z_{0}} \right|^{n} \left| \frac{\theta_{n}^{\mu}(z) - \theta_{n}^{\mu}(z_{0})}{1 + \theta_{n}^{\mu}(z_{0})} \right|. \tag{13}$$

We obtain the following inequalities

$$\left|1-\left(\frac{z}{z_0}\right)^n\right| = \left|1-\frac{z}{z_0}\right| \left|1+\frac{z}{z_0}+\left(\frac{z}{z_0}\right)^2+\cdots+\left(\frac{z}{z_0}\right)^{n-1}\right| \le n \left|1-\frac{z}{z_0}\right|$$

for the first summand of (13). According to Schwarz's lemma, there exists a constant ρ such that

$$\left|\frac{\theta_n^{\mu}(z) - \theta_n^{\mu}(z_0)}{1 + \theta_n^{\mu}(z_0)}\right| \le 1 \quad \text{as} \quad |z - z_0| < \rho.$$

Then, for such |z|, we obtain for the second summand of (14):

$$\left|\frac{z}{z_0}\right|^n \left|\frac{\theta_n^{\mu}(z) - \theta_n^{\mu}(z_0)}{1 + \theta_n^{\mu}(z_0)}\right| \le \left|\frac{z}{z_0}\right|^n |z - z_0|.$$

From (9) it follows that

$$\lim_{n\to\infty} a_n = 0, \quad \lim_{k\to\infty} \frac{\sum\limits_{n=1}^k n|a_n|}{k} = 0, \quad \lim_{k\to\infty} \frac{\sum\limits_{n=1}^k |a_n|}{k} = 0.$$

Then a number N_3 exists such that

$$\frac{\sum\limits_{n=m+1}^{k}n|a_n|}{k}<\frac{\varepsilon}{3(1+R)}\quad\text{and}\quad \frac{\sum\limits_{n=m+1}^{k}|a_n|}{k}<\frac{\varepsilon}{3(1+R)}\quad\text{as}\quad k>N_3.$$

Therefore,

$$\sum_{n=m+1}^{k} |a_n| \left| \frac{\widetilde{J}_n^{\mu}(z_0) - \widetilde{J}_n^{\mu}(z)}{\widetilde{J}_n^{\mu}(z_0)} \right| \le \sum_{n=m+1}^{k} n|a_n| \left| 1 - \frac{z}{z_0} \right|$$
 (14)

$$+ \sum_{n=m+1}^{k} |a_n| \left| \frac{z}{z_0} \right|^n |z - z_0| \le k \frac{|z - z_0|}{R} \frac{\sum_{n=m+1}^{k} n|a_n|}{k} + k |z - z_0| \frac{\sum_{n=m+1}^{k} |a_n|}{k}$$

$$< k |z - z_0| \frac{1+R}{R} \frac{\varepsilon}{3(1+R)} = k |z - z_0| \frac{\varepsilon}{3R}.$$

Finally, let us note that

$$\left| \sum_{n=0}^{k} a_n - F(z) \right| \le \sum_{n=0}^{m} |a_n| \left| \frac{\widetilde{J}_n^{\mu}(z_0) - \widetilde{J}_n^{\mu}(z)}{\widetilde{J}_n^{\mu}(z_0)} \right| + \sum_{n=m+1}^{k} |a_n| \left| \frac{\widetilde{J}_n^{\mu}(z_0) - \widetilde{J}_n^{\mu}(z)}{\widetilde{J}_n^{\mu}(z_0)} \right| + \sum_{n=k+1}^{\infty} |a_n| \left| J_{n,\mu}^*(z; z_0) \right|.$$

Let $N = \max(N_1, N_2, N_3), k > N$ and $|z - z_0| < \rho$. Then by using (11),(12),(14), we can conclude that

$$\left| \sum_{n=0}^{k} a_n - F(z) \right| < |z - z_0| k \frac{\varepsilon}{3R} + k |z - z_0| \frac{\varepsilon}{3R} + \frac{\varepsilon}{3} \frac{1}{k} \frac{|z_0|}{|z_0| - |z|}$$

$$= \frac{\varepsilon}{3} \left[\frac{2k}{R} |z - z_0| + \frac{1}{k} \frac{|z_0|}{|z_0| - |z|} \right].$$

If we substitute z by $z_0(1-\frac{1}{k})$, then

$$\left|\sum_{n=0}^{k} a_n - F\left(z_0(1-\frac{1}{k})\right)\right| < \frac{\varepsilon}{3} 3 = \varepsilon.$$

This proves that $\lim_{k\to\infty}\sum_{n=0}^k a_n$ exists and equals $\lim_{k\to\infty}F\left(z_0(1-\frac{1}{k})\right)$, i.e.

$$\sum_{n=0}^{\infty} a_n = \lim_{k \to \infty} F\left(z_0(1 - \frac{1}{k})\right) = S.$$

Thus the theorem is proved.

Remark. Putting $\mu = 1$ in above considerations leads to the corresponding results (see [4]) for series in the Bessel functions $J_{\nu}(z) = (z/2)^{\nu} J_{\nu}^{1}(z^{2}/4)$, namely for

$$\sum_{n=0}^{\infty} a_n J_n(z), \quad z \in \mathbb{C}.$$

REFERENCES

- Boyadjiev, L. Abel's theorems for Laguerre and Hermite series. Compt. Rend. Acad. Bulg. Sci., 39, No 4 1986, 13 - 15.
- Kiryakova, V. Generalized Fractional Calculus and Applications. Longman & J.Wiley, Harlow & N. York, 1994.
- Marichev, O. I. A Method of Calculating Integrals of Special Functions (Theory and Tables of Formulas) (In Russian: Metod vychisleniya integralov ot spetsial'nykh funktsij (Teoriya i tablitsy formul)). Minsk, Nauka i Tekhnika, 1978.
- Paneva -Konovska, J. Cauchy-Hadamard and Abel type theorems for Bessel functions series. In: Proc. 19-th Summer School "Applications of Mathematics in Engineering", Varna, 24.08-2.09,1993, Sofia, 1994, 165 - 170.
- Rusev, P. Analytic Functions and Classical Orthogonal Polynomials. Publ. House Bulg. Acad. Sci., Sofia, 1984.
- Tchakalov, L. Introduction in Theory of Analytic Functions. Sofia, Nauka i Izkustvo, 1972 (in Bulgarian).

Received on June 6. 2006

Faculty of Applied Mathematics and Informatics Technical University of Sofia 1156 Sofia BULGARIA E-mail: yorry77@mail.bg