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Some important properties of the power series in complex domain are given by the
classical Cauchy-Hadamard, Abel and Tauber theorems. In this paper we prove same
type theorems for series in the Bessel-Maitland functions.
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1. INTRODUCTION

o
Some important properties of the power series Y a,2™ in a complex domain
n=0

are given by the classical Cauchy-Hadamard, Abel and Tauber theorems.
In general, by the classical Abel theorem, from the convergence of a power series
o0

f(z) = ) anz" at a point zy, follows the existence of the limit lim f(z) = f(z0),

n=0
when z belongs to a suitable angle domain with a vertex at a point z,. The
geometrical series [6, p.92): 5 =1-2+2>-2%+... at 29 =1 gives an example

that, in general, the inverse proposition is not true, i.e. the existence of this limit
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X

does not imply the convergence of the series Y a,,z7 without additional conditions
n=()

on the growth of the coeflicients.

The corresponding classical result is given by the following theorem.

Theorem (Tauber). If the coefficients of the power series satisfy the condi-

tion lim na, = 0 and if lin% f(z) =8 (z =1 radially). then the series > ay, is
n—oc T—

X
convergent and Y a, = S.
n=0

c
It turns out that Abel’s theorem fails even for series of the type > ap, 2™,
k=1
where (nl,ng,...,n.k,...) is a suitable permutation of nonnegative integers [6,

p.92]. Therefore, it is interesting to know if for series in a given sequence of holo-

to this question for series in Laguerre and Hermite polynomials is given in [5, §11.3],
(1], and for Bessel functions - in [4]. :

Let J¥(z) be the so-called Bessel-Maitland function, see 2, p.336, 352], [3,
p.110]:
xX
(—2)*
iy —
o z) ZIsc! U1+ v+ pk)’

k=0

2e€C, pu>-1.
Let us consider series of the form

Zan:"J,‘f(z), 2e€C, u>o0. (1)

n=()

We prove in this paper the corresponding Cauchy-Hadamard, Abel and Tauber
type theorems for series in Bessel-Maitland functions of form (1).

2. A CAUCHY-HADAMARD TYPE THEOREM

Denote for shortness:

—~

JE(2)=z2"J"(2), n= 0.1,2, ...

n

The following asymptotic formula can be easily verified for the Bessel-Maitland
functions:

~

Tz =(14042) /T(n+1), 2eC, p>o. (2)

0r(z) =0 as n — oo (n € N).
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Theorem 1 (Cauchy-Hadamard type). The domain of convergence of the
series (1) is the circle domain |z| < R with a radius of convergence R = 1/A. where

A = limsup( |an| / T(n+ 1))/, (3)
n—oc
The cases A = 0 and A = oc are incorporated in the common case. if 1/A means
x. respectively 0.

Proof. Let us denote
Un(2) = and*(2), by = (lan] /T +1))".
Using the asymptotic formula (2), we get
up(z) = ap2"(1+ 6%(z)) / T(n +1).

The proof goes in three cases.

1. A =0, then lim b, = limsupb, = 0. Let us fix z # 0. Obviously, there

Lo n—oC

exists a number N such that for every n > Nj: |1 + 0#(z)] < 2 and 2b, < 1/|z2|
which is equivalent to |u, (z)| = b?|z]"|1+6%(z)| < 2' ™. The absolute convergence
of (1) follows immediately from this inequality.

2. 0 < A < oc. First, let 2 be inside the domain |2| < R (z € C), ie.

[z|/R < 1. Then limsup |z]|b, < 1. Therefore, there exists a number ¢ < 1 such
N—+2C
that limsup |z]b, < g, whence |2]"b}* < ¢". Using the asymptotic formula for the
TN O
common member u,(z) of the series (1), we obtain |u,(2)| = b}|z|"|1 + 0£(z)| <

q"|1+60%(2)|. Since nli_{l;c 04 (z) = 0, there exists Na: for every n > Ny |[1+6¢(z)] < 2

20
and hence |u,(2)| < 2¢™. Since the series ) 2¢™ is convergent, the series (1) is
n=0

also convergent, even absolutely.
Now, let z lie outside this domain. Then |z|/R > 1 and limsup |z|b,, > 1.

=+
Therefore there exist infinite number of values ny of n: [z|™*bF > 1. Because
lim 64(z) = 0, there exists N3 so that for ny > Ngz; |1 + 604 (2)] > 1/2, ie.

= 2O

|un, (2)] > 1/2 for infinite number of values of n. The necessary condition for
convergence is not satisfied. Therefore the series (1) is divergent.

3. A =oc. Let z € C\{0}. Then b,, > 1/|z| for infinite number of values
ny of n. But, from here |u,, (2)| = |z|™ b* |1 + 604 (z)| = 1/2 and the necessary
condition for the convergence of the series (1) is not satisfied and we conclude that
the series (1) is divergent for every z # 0. - O
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3. AN ABEL TYPE THEOREM

Let 20 € C, 0 < R < o0, |29| = R and g, be an arbitrary angle domain with
size 2¢ < m and vertex at the point z = zp, which is symmetric in the straight line
defined by the points 0 and 29. The following theorem is valid:

Theorem 2 (Abel type). Let {a,}5, be a sequence of complex numbers, A
be defined by (3). 0 < A < o0. Let K = {|z| < R,R = 1/A}. If f(z) is the sum of
the series (1) on%he domain K and this series is convergent at the point zo of the

XK ~
boundary of K. then lim f(2)= 3 a,Jk(20). for |z2| < R and z € g,. i.e.

n=0
lim £(z) = Z)anJ (0), 2 € g, (4)
Proof. Consider the difference
X - s 9] N _
A(2) =) andh(20) = f(2) =Y an(J¥(z0) — JE(2)), (5)
n=0 n=0
representing it in the form
k - - X - N
L AR) =Y an(TE(z0) ~ JE) + Y an(JE(20) - JE(2)).
n=0 n=k+1
Let p > 0. By using the notations
Bm = Z and (ZO) m>k, (=0, v

n=k+1

(2) =1 = J#(2)/ J¥(z0),

and the Abel transformation [1], we obtain consequently:

k+p N N k+p
Y an(TH(20) = JEE) = Y. (Ba = Ba-1)7a(2)
n=k+1 n=k+1 '
k+p—1
*ﬁk-}-p'}’k#—p(z Z ﬁn ’7n+1(z) ’Yn( ))
n=k+1
ie.
k+p N _ k+p _
D an(JTH(z0) = JE(2) = (1= Tt () /T (20) S and¥(z0)
n=k+1 n=k+1
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k+p—1 n _ Tu
_ Z ( Z a..;Jf;‘(zo))( :{#(z)) n+l(z)))

n=k+1 s=k+1 J#(zo)) n+1(20 )

From the asymptotic formula (2), it follows that there exists a natural number M
such that J#(zg) # 0 for n > M. Let k > M. Then, for every natural n > k:

JH(2) /T8 (20) = Jh, 1 (2)/ T84 (20) = (2/20)" (6)

RN +651(20)) — (2/20)(1 + 67, 1 (2))(L+ 07(20))
(1 + 6n(20))(1 + 07,4, (20))

For the right hand side of (6) we apply the Schvartz lemma. Then we get that
there exists a constant C':

| (2)/ T (20) = Ty (2)/ Ty 1 (20)] < Clz = 20]|2/ z0[™.

Analogously there exists a constant B:

1=, (2)/J¢, (20)| < Blz = 2| < 2Bz].

Let € be an arbitrary positive number and choose N(¢) so large that for k > N(¢)
the inequality

| Y a.J"(20)| < min(e cos /(12B]z0). £ cos o/ (6C|z0]))
s=k+1

holds for every natural n > k. Therefore, for k > max(M, N(g)):

| Y a.J%(z0)| < min(e cos o/ (12B|z0]), € cosp/(6C) o)),

s=k+1
and
| D an(J(z0) — JE(2))] < (ecosp/6)(1+ Y 20|12 — 20]lz/20]")
n=k+1 n=k+1

< (cosp/6)(1 + |2 — zol/([20] — 21))-

But near the vertex of the angle domain g, in the part d,, closed between the angle’s
arms and the arc of the circle with center at the point 0 and touching the arms of
the angle we have |z — zp|/(]z0] — |2]) < 2/ cos, i.e. |2 — zp] cosp < 2(|20| — |2]).
That is why the inequality

| f: an(J4(20) = J4(2))] < (ecosp) /6 +¢/3 < £/2 (7)

n=k+1
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holds for z € d, and k > max(M, N{(¢)). Fix some k > max(M, N(c)) and after
that choose d(¢) such that if |z — zg| < d(¢) then the inequality

k
1D an(Jh(z0) = JH(2))] < /2 (8)

n=0

holds inside d,. We get

AR =1 an(JH(z0) = J4(2))|

n=0

for the module of the difference (5). From (7)’and (8) it follows that the equality
(4) is satisfied. O

4. A TAUBER TYPE THEOREM

G
Let us consider the series > a,, a, € C. Let
n=()

20€C, |z/=R, 0<R<oo, JH(z)#0 forn=012...
For shortness, denote N

JE(z)

T (z0)

T2 20) =

o0
Let the serics ) anJy ,(z; 20) be convergent for |z| < R and

n=0

F(z) = Zdn.l,‘:’”(z; 20), |2] < R.

n=()

Theorem 3 (Tauber type). If {a,}.°, be a sequence of complex numbers :
with _.
lim{na,} = 0, (9) -

and there exists

lim F(z)=S (|z| < R,z — 2 radially),

Z=*20

o0
then the series Y ay, is convergent and
’ n=0
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Proof. For a point z of the segment [0, zo] we have

Z a, — F(z Z @n = Z andy ll(" 20)

n=0

_ Zk:a Jh(z0) _ S Jh(2)
"t J¥(20)

n==() n (ZO) n=()

=Zk: J#(20) — J,‘f (z) f: anJ? (2 20)
nYn .\

70
n=0 Jn (*'0 n=k+1

and therefore

Zan_ z)| <Z‘an|

n=(

JH(z0) — J#(2)
4 (z0)

+ Z |an||J5 . (z:20)] . (10)

n=k+1

By using the asymptotic formula (2) for the Bessel-Maitland functions, we obtain:

2 \" 1+ 64(2) z\" ~
2z — T o, —an\ — 1 gn 212 .
p( 0) (30) 1+ 9£,(20) a (Z()) ( + . ( 0))

Let € be an arbitrary positive number. We choose a number N so large that
the inequalities |1 + 6 .(2:20)] < 2, |kag| < § hold as k > Ny. If & > Ny and 2 is
on the segment [0, 2], then for the second summand in (10) the following estimate
is valid:

o0 o T
z ~—
> feal o = Y fanl | Z Wt Gszzl
n=k+1 n=k+1
k41 = n—k-1
<2l=f D0 al|=f < szlan+k+1|
n=k+1 n=0
[(n+k+1) an+k+1| = €/6 2
=2 <2y —— =
Z n+l.+1 zo nz=:0n+k+1
2 € 1 el Jzof

— . —

Sk61- 2/l ~ 3 k 2] = [2]

Now let us consider the first summand in (10). We have:

k
2 lan|

T8 (z0) — J#(z)

ar T4 (z0)
_ Ji( ~o) )] & J#(20) — J¥(2)
Z || - n;ﬂ lan] T
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According to Schwarz’s lemma, there exists a constant C such that

JE(z0) — JH(z)
JH (20)

< C)z ~ zl.

Moreover, there exists a number Ny such that the following inequality

e

> lan|

]-’ ~n (Z )

<Clz—zlk 55 = |2 — 20l k

3RC 3R

holds as k > N,. It remains to estimate the sum

i 0, | ZC0) = T (2)
=41 J”"(”D)

To this end, using asymptotic formula (2) for the Bessel-Maitland functions, we
find consequently:

Ji(z0) = Jh(2) _ (20)"(1 + 04(z0)) ~ 2"(1 + 04(2)) 1_(_;)" 1+ 0(2)

() 23(1+ 65 (20)) 20/ 1+ 65(20)

—1- (_.) [1 AS -"ﬁ(%)] 1 (_) 3 (*) 01(z) ~ 64(20)
- 20 1+ 64(z20) - 20 20 1+ 6h(zp)
JH(z0) — JH(z2)

Therefore,
A N
1= (3)
Ji{z0) 20
We obtain the following inequalities
n 2 n-1
2 z z
b &) e ()
20 20 20

for the first summand of (13). According to Schwarz’s lemma, there exists a con-
stant p such that

" |64(z) = B(z0) |

1 +0:(20) (13)

+

30

|
20

Ok (z) — 64 (2p)

<1 — .
1+ 05 (z0) as |z —zl<p

Then, for such |z|, we obtain for the second summand of (14):

2| (84(2) ~ Bi(z0)
20 1 + 05 (20)

n

|z — zp).
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From (9) it follows that

k k
Z n‘a"‘ 21 la,|
» . n=1 — . n= — )
Jim o =0, Jim #=p— =0 i T 70
Then a number N3 exists such that
k k
Y. nlan Y. lan]
n=m+1 < 3 and n=m+1 < 3 as k> Na.
k 3(1 + R) k 3(1+ R) '
Therefore,
£ ~l: "’0) J"(Z) . 2
> laal | < . mlan)il-— (14)
n=m+1 J ( ) n—-m+1 0
k k
IZ 2 l Z lnlan, E lla“'
— 20| n=m+ n=m-+
— ol < 2 —
+ Z [anl w| <k - +klz = 20l =
n=mn+1
1+ R €
o = klz~
<klz =20l = 3R ~ R z°l3R
Finally, let us note that
k m et T
JH(z0) — J5(2)
Y an - F)| < 3 lanl | 2222
n=0 =0 % (20)
J" zp) — J z
M SR EACIRE/AC) I STV
n=m+1l J ( n=k+1

Let N = HlaX(Nl\Ng,Ng),k > N and |z — Z()I < p. Then by using (11),(12),(14).
we can conclude that

Zan~F()

<|z-zolk +k|z—z0]iR-

c |2k |20]
-5 (R b

If we substitute z by zo(1 — %), then

ian ~F (zo(l ~ %))

n=0

£
3 =c¢.
<3 €
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k
This proves that lim Y a, exists and equals klim F (zo(l - %)) Le.
C—

k—a¢ n=p
- 1
Z(Ln = lim F (Z(}(]. — —)) = S.
k—~x k:
n=0
Thus the theorem is proved. O

- Remark. Putting p = 1 in above considerations leads to the corresponding
results (see [4]) for series in the Bessel functions J,(z) = (z/2)"J)(2%/4), namely
for

i andn(z), z€C.
=0
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