rOAWIHUK HA COPUUCKUA YHUBEPCUTET .CB. KJIMMEHT OXPUICKN*

PARYJITET 11O MATEMATHURA U MHPOPMATHUKA
Tom 99

ANNUAIRE DE [’'UNIVERSITE DE SOFIA [ ST. KLIMENT OHRIDSKI*

FACUL’I‘E DE MATHEMATIQUES ET INFORMATIQUE
Tome 99

MONADIC SECOND-ORDER LOGIC ON EQUIVALENCE
 RELATIONS !

G.GEORGIEV, T. TINCHEV

This paper is devoted to exploring expressible power of monadic second-order sentences
over the class of all relational structures containing only finite number of equivalence
relations which are in Jocal agreement (i.e. for any point of the universe the corre-
sponding equivalence classes with set theoretic inclusion form linear order). Using the
pebble games we prove the finite model property and establish an effective translation
of these sentences in the first-order language preserving the models. So, the monadic
second-order language over the considered class of relational structures has the same
expressible power as the first-order language and the monadic second-order theory of
this class of structures is decidable.
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We consider purely relational finite languages for the first-order predicate cal-
culus with only unary and binary predicate symbols. Let £ = (Py,... P, Ry ... Ry)
be such a language, with Py, ..., P, and R,,..., R, being the unary and the binary
predicate symbols, respectively. Take the class of structures where the interpre-
tations of the binary predicate symbols are equivalence relations. In [3] Ershov
announces that the monadic second-order logic of this class of structures is decid-
able for n = 1. Furthermore, in [2] Janiczak shows that the first-order logic of this
class is undecidable for n > 2.

We further restrict the equivalence relations and consider the class of struc-
tures in which the binary relations are interpreted by equivalence relations in Jocal
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agreement. We then show the decidability of the resulting monadic second order
logic and demonstrate that there is a translation of every MSO sentence % to a
first-order sentence ' such that ¥ and v’ have exactly the same models.

From now on, unless explicitly stated otherwise, we consider all languages to
be finite and purely relational with only unary and binary predicate symbols. We
also fix a language £ = (Pr,...,PRy,....R,), with P,,...,P. and Ry,..., R,
being the unary and the binaty predicate symbols, respectively. We assume that
we always have equality in the structures and for convenience treat the equality as
one of the binary predicates of the structures. Thus we always have n > 0.

In what follows we extensively use a kind of bisimulation games called “pebble
games” to show similarity between structures. For complete details refer to [1].
Let A and B be structures for £ and let s € N,s > 0. The infinite pebble game
G5 (2, B) is played by two players on a board which consists of the two structures
2 and B. Each player has s pebbles, numbered from 1 to s. Players take turns.
The first player chooses a pebble from her set of pebbles and a structure (A or
PB) and places the selected pebble on some element of the structure. The second
player answers by placing his pebble with the same number on some element of the
other structure. The game continues indefinitely. Each time, after Player II has
made his move, there is an even number of pebbles on the board. Half of them are
in A and the other half - in B. For example let ay,...,ax and by,...,bx be the
elements of A and B respectively, on which the players have pebbles, and let for
all e = 1,...,k, a; and b; are under equal-numbered pebbles. Before each move of
Player 1 the players review the configuration on the board. and if they find that
the mapping f : a; — b;,i = 1,...,k is not a partial isomorphism between 2 and
B, Player I wins. Player II wins only if Player I does not win at any move.

Definition 1. Let 2 and B be structures for the language £ and let s € N , 8> 0.
We say that Player II has a winning strategy for the infinite pebble game G%5_(24,°B)
iff Player II can win the game. no matter how Player I plays.

A similar definition can be given for winning strategy for Player I. Obviously.
for a given game exactly one player has a winning strategy.

Definition 2. We say that two structures % and B for the language L are s-
partially isomorphic (and write it A= -+ B) iff Player II has a winning strategy for
the infinite pebble game G (¥, B).

The main result about pebble games is given by the following:

Theorem 1. (/1)) For any two structures % and B for the language L and for any
s€N,s>0, A=), B iff A and B satisfy the same formulas of no more than s
variables of the infinitary logic L., .

Definition 3. Let Ry,..., R, be equivalence relations with common domain.
Ry, ..., R, are in local agreement iff for all x in the domain of the relations, the set
{lzlg,,..-,|z|r,} of the equivalence classes of x according to Ry, ..., R, is linearly
ordered according to the set theoretic inclusion.
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Definition 4. Let £ be a language of the considered type. We denote by K
the class of structures for L in which the binary predicates are interpreted with
equivalence relations in local agreement. Sometimes, when the language £ can be
determined from the context we write K instead of K¢

Definition 5. Let % € K and let C' C |2A|. We say that C is @ mazimal equivalence
class in A iff

(31 <i < n)(|zlr, = C& (Yz € C)(V1 < j < n)(|z|r, C |z|r))

Note that C is a maximal equivalence class iff C' is a equivalence class and it
is not a proper subset of any other cquivalence class.

For brevity we sometimes use the term ’class’ instead of the long form 'maximal
cquivalence class’.

Let A = (||, P,...,Pr,Ry,.~.Ra), % € K and C is a maximal equivalence
class in 2. Let P! = Alel for 1 <i < rand R} = Ric for 1 <1 < n
Then € = (C, P/,...,P.,R},...,R;,) is a substructure of A. We say that € is the -
substructure of A generated by C.

Since the maximal equivalence classes do not intersect and also cover the whole
set |2], we get that the structure 2 can be represented as a direct sum of the
substructures generated by its maximal equivalence classes. As there is one-to-
onc mapping from maximal equivalence classes and the substructures generated by
them we shall use these two terms interchangeably. Whether we speak about an
cquivalence class or a substructure will be clear from the context.

Definition 6. Let s € N,s> 0. and let k and | be cardinals (finite or infinite).
We say that k and | are s-equal iff:

k=1V(k>s&l>s)

Note that for any s € N,s >0, any two cardinals greater or equal to s are
s-cqual.

Proposition 1. Let s € N,s > 0. Two structures % € K and B € K are s-
partially isomorphic if and only if for each mazimal equivalence class in one of the
structures. the number of the classes s-partially isomorphic to it in 2 is s-equal to
the number of the classes s-partially isomorphic to it in B. '

Proof: We use Pebble games to show the equivalence.

First, let the condition be true. We show that 2= ., by showing there is a
winning strategy for Player II in the infinite pebble game with s pebbles.

Suppose we have k pebbles, ay,...,ax in % and k pebbles, bi,...,br in B,
k < s and the mapping a1,...,ax — bi,...,bx is a partial isomorphism between
A and B. We will show that whatever the first player does, the second player can
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preserve the partial isomorphism. Obviously, this implies that the two structures
are s-partially isomorphic.

When k < s, the first player has two choices — she can either move one of her
pebbles already placed in one of the structures. or she can place a new pebble in
one of the structures. Without loss of generality we shall consider the case when a
new pebble is placed in one of the structures.

Thus, let agq1 be the new pebble placed in 2. The pebble goes to one of the
classes in 2. Denote that class by A. Clearly. if A contains any other pebbles,
then the class B where Player II should place his answer is determined. Otherwise,
Player II should pick a class B of B which is s-partially isomorphic to A and does
not contain any pebbles in it. This can always be done because the number of
classes in 2 which are s-partially isomorphic to A is s-equal to the number of class
in B which are s-partially isomorphic to A. A similar argument can be used when
Player I places the pebble in 8. Thus Player II has a winning strategy for the game
and therefore A=), ,B.

Now suppose QIN,,,,”% and supposc there is a class C in one of the structures,
such that the number of classes of A which are s-partially isomorphic to C' is
not s-equal to the number of classes in B which are s-partially isomorphic to C.
There are several cases, but without loss of generality we shall consider only one
of them - when there are finite number of classes s-partially isomorphic to C in
both structures. So, let A;,..., Ax and By,..., B; are all the classes in 21 and B
respectively, which are s-partially isomorphic to C (the class C, of course. is among
them). As &k is not s-equal to [ it follows that either k <& k < sorl < k&l < s.

1. k<l&k < s.

In that case the following is a winning strategy for the first player:

Start placing one pebble in each class from B;,...,B;. Since k < &k < s
there will be a move in which Player II will place his pebble in some class
A after Player I haseplaced her pebble in some class B and the class A will
either has already a pebble in it (in which case Player II immediately loses)
or A will not be s-partially isomorphic to C' (and B). At this point Player I
can restrict the game to the classes A and B only. As these two classes are
not s-partially isomorphic Player I has a winning strategy for the rest of the
game.

2. l<k&l<s

This case is resolved by symmetry (this time Player I starts to place pebbles
in classes of )

O

Definition 7. Let ¢ be a formula of the form 3z, ...3xVyy, where v is a formula.
Let x be a variable and R be a binary predicate symbol. We call the formula

k
ol = 3x)... 3wy (/\ ziRx & (yRx = dr))

i=1
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4 shallow relativization of (w.r.t. x and R).

Theorem 2. For each structure % € K and for each s € N,s > 0, there is a FO-
formula V. such that for every structure B € K:

B vy < A=,,.B

part

Moreover. for a given s € N, s > 0. there are only finite number of different formu-
lae vy (modulo logical equivalence ). In other words. for a given s € N, s > 0, the
relation =5, has finitely many equivalence classes.

Proof: Let M be the set of all substructures of 2 which are generated by the
maximal equivalence classes of 2. The relation 2%, partitions M to equivalence
lasses. Let J be the factorization of M by =,,., and I;,7 € J be the equivalence
classes of M. For j € J and i € I, denote by A the structure i. Then 2 can be
represented in the following way:

ﬁ:Um;

jediel;

We have:

71 AuS 12 -
j]'_partmjg — h = ]2

—

Let m; = min{I;,s}. for j € J and m = J.
The proof is by induction on the number n of the binary predicate symbols in
the language of the structure 2.

1.n=1

In this case each of the structures Qlj. consists of a single element. Consider
the following formula:

P (z) = APi(a)& ... &XjPr(2)

where A% is the empty word, when %} = 3z Pi(z), and /\;”-' is the negation sign
otherwise. Obviously, if two one-element structures satisfy the same formula
of the above mentioned type then the structures are s-partially isomorphic.
Note that ™ (z) depends only on j, but not on i. For that reason we may
omit the upper index of % and just write ¥ ().

Now take the formula:

Yy = 3zt ... 31,

2 2
et . .. 3T,

m m
A=
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30

Vy( /\ J:fl' £z &
i1 #12Vji1 #J2

&Tl(xl, .. ,lm)&

n
&'rm(:r ;n,,. &

&(\/ v¥ ()

JjeJ
where the formulae 7 are defined as follows:
Tj(iI‘],. . ...'L‘k)

= V..(/\z;éa:t = % (2) &P (x) & ... &Y% (xx)), when k < s

l...

and

(1, xk) = Y2 (@) & ... &Y (zx), when k = s

The meaning of the formula is evident - it just guarantees the desired condition
from Proposition 1.

.n>1

Let j € J is fixed. Since in each of the structures Ql' at least one of the binary
relations coincide with the universal relation, we can drop one relation and
use the induction hypothesis. Without loss of generality suppose that R,, is
interpreted by the universal relation in each structure Ql; Let £' = L\ {R,.}.
We can use the induction hypothesis and see that for the language £’ there
is a formula 13, such that:

p)

%IC' l=‘¢,[’ P = ’Blg pa,.th fOI"lG]

From here we see that 13; does not depend on 7 and hence we again can use

the short notation w‘a lé‘rom the induction hypothesis we also get that all
these formulae are fimtclv many (modulo logical equivalence), and hence J is
finite.

Note that 9§ is a formula in both £ and £'. Now let the formulae %3
are shallow relativizations of Py, wrt. Ry (The variable w.r.t. which we
relativize will be clear from the (‘ontext)

The formula we are seeking is:

Yy =  Jxy...3z,,

2 2
3x7... 327,
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vy A\ ol Rl &

1y FigVi#£i2
k=1...n

&Tl(z},...,a‘.,’m)&

& T (2", .. 2 )&

&(\ ¥ )

jeJ
where the formulae 7 are defined as:
Tj(.’lfl, o o .Il,‘k)
k — —_—
= Vz(/\ z#xi = Wy (2) &Py (z1)& ... &y (zx)), when k <s
=1
and as:
(X1, ..., Tk) = z/_)gj(:rl)& &@j—(xk), when k = s

Since the number of elements of J and the numbers m; are bounded we get
that therc are only finite number of formulae 1y, for all structures of K.

Let A, B € K and B; is a maximal equivalence class in B relatively the binary
predicate symbol R. Let 103 be a shallow relativisation of g w.r.t. R and z.

Observe that:
B; = vy < B k= Y§la/z], for a € |B;]

From the observation it is easy to verify that the formula we gave guarantees
the condition from Proposition 1.

O
Definition 8. Let h(s,n,r) denote the number of equivalence classes of the relation
= et for a language with n binary and v unary predicate symbols.

Corollary 1. For each structure % in K there exists a finite structure Usin, such
that:
mIE;Q,rtmfil‘l

and the structure Asin can be selected to be of cardinality bounded from above by a
computable function.
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Proof: The proof easy follows from Proposition 1 by induction on the number
of binary predicate symbols in the language and the fact that = = art has onlv finite

number of equivalence classes. The cardinality of % f,,, is bounded by s™. H h(s, k,r).
k=1
O

Proposition 2. Let 2 u B be structures fmm K and let Ql"“;a’:.(,s Tt Then
for any P C |U| exists Q C |B|. such that: (U, P)=;,,, (B, Q)

Proof: The proof is by induction on the number n of the binary predicate -
symbols in the language.

As in the proof of Theorem 2, let the structure 2 be represented as a direct
sum of its maximal equivalence classes: '

a= |J «£

jeJ¥iel;

Where J% is the factorization of the set of maximal equivalence classes of % over

the relation N;ahr(f ) For j € J®, I, is the appropriate equivalence class of

h(snrtl . : s
bt ) over the set of the maximal equivalence classes of 2 and A} is more

verbose notation for i.
Similarly, B can be represented as:

Note that due to the fact that the structures % and B are s.h(s,n,r + 1)-partially
isomorphic we have J% = JB.

For convenience we assume that the two representations are compatible in the
following sense:

(Vi1 € J*)(Viz € JP)(ji = jo <= (Vir€ I7)(Vip € I2) (@A 2 0™ Digizy)

From Proposition 1 we get

I? =s.h(s,n, r+1) I‘B (1)
for all j € J®.

Let now P C |2|. We introduce a new predicate symbol P, . which will be
interpreted in 2 by the predicate P. Thus we obtain a new structure ¢ = (A, P)
for the enriched language LU { P4, }.

The structure € can be represented as a direct sum of maximal equivalence

classes as well:
c= |J @

FIPARIT
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Now let ]c = {eglcel C} for j € J¢. For the above representation,evidently,
fol cach j € J®, there are j1.....7, € J€, with r < h(s,n,r + 1) such that:

— ¢ u
—JSU...UJS

Now fix a j € J%. Because of equation (1) and since r £ h(s,n,r+1) it is
casy to sec that I'¥ can be represented as:

and —
(V1 i ), =5 If,)
Lot 1 £ =1 be fixed, ‘Bf; be arbitrary structure from I;, and € € If We shall
define a predicate @ in ‘Bj with the desired properties. The definition of 2 can
he carried in the same way for any structure of [;,.

We distinguish two cases:

1. n=1:

Without loss of generality we can assume that the only binary relation in the
Janguage is the equality. In this case QZ; and ‘Bﬁ are one-point structures
and Q can be defined on ’B‘;‘,. in the same way as P is defined in €.

2. n>1:
Let m' st C; o From the fact that ‘21"- and ‘B”- are maximal equivalence
classes for A and B respectively. and from 2! "’;,f’r(: ™ TH)‘B” it follows that

there exists a binary predicate symbol R from the language [3 such that it
is interpreted in ! and B with the universal relation. Let £ = £\ {R}

and consider the restrictions of Ql; and %5; to the language £. We have:

t s.hismr+1)
m | Npart %ji L

Since h(s,n,7+1) 2 h(s,n — 1,r 4+ 1), from the induction hypothesis we get:

(3Qciml,) (2, P),, Zari(B1.Q),)
As R is interpreted in both structures with the universal relation we get:
(5, P) =500 (B5,.Q)
Thus we show that the predicate Q can be defined on any maximal equivalence

class. Now, taking the union of these predicates we define the interpretation of Q
on the structure 8. =

Ann. Sofia Univ., Fac. Math. and Inf., 99, 2009, 25-35. 33



Definition 9. Let ¢ be a monadic second-order formula. We say that @ is first-
order definable over K iff there is a first-order formula v such that for every struc-
ture A € K:

Ay <= ARy

Theorem 3. Every MSO sentence is first-order definable over K.

Proof: Let ¢ = K Py... KN, Pner be a MSO formula, where K. ..., K,
are quantifiers, Py,..., P,, are monadic second-order variables, and ¢, is a FO

formula. We shall prove that there exists a FO formula ), such that for each
structure A € K:
Ay <= AEY

It is sufficient to show how to remove from the formula ¢ a single quantifier
over a second-order variable.

1. Let ¢ = 3Py, where ¢ is a first-order formula and let %A € K. Let s be the
number of the first-order variables that appear in ;. Consider the formula:

. s.h(sn,r+1
Y = v "l)g )

AeN
(3PCIAN(R. Py )

Because of the finite number of the formulae ¥ (modulo logical equivalence),
for all m € N, m > 0, the disjunction is a finite and hence 1’ is a first-order
formula.

Note that the above disjunction can be empty. In that case the normal
conventions apply: that is, we consider the empty disjunctions to be false
(replacing the disjunction with =Vz(z = z), for example)

Apparently, for each B € K if B |= 3Py, then B = 1.

In the opposite direction, take B € K and B = 1. We shall demonstrate

that B = JPyp;. Since B | ¢ there exists a structure A € K such that

s.h(sm k41 s.h(s.mk+1
B = 5" ) and hence ng;fm(f mk+1) 08 Morcover, for 2% we have:

(3P C |A) (A, P) = 1)
From Proposition 2 we obtain that there exists Q C |®B| such that:
(m’ P) g;art (%’ Q)
Thus we get (B, Q) = ¢1. from where we conclude the desired 8 = .

2. Let ¢ = VPy,, where ¢, is a first-order formula. Consider the formula:

d’ — _ V w;.h(s.n.k+])

AEN
(YPCIADUA. PY=v))

By an argument similar to the above we obtain B | ¢ <= B | ¢.
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Corollary 2 The monadic second-order logic of K is decidable.

Proof: Immediately from Corollary 1 and Theorem 3. a

Finally, we would like to mention some further directions for research on the
subject. One interesting area is adding functional symbols to the language. We
alrcady know that adding one functional symbol under some simple restrictions
does produce a theory which is not decidable, but have not investigated other
‘nteresting cases. Also, one can try to expand this result to arbitrary formulae,
not just sentences. We do not know yet if this can be done. Another interesting
perspective is research on some possible connections with Data Analysis Logic.
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